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Nomenclature

a - radius of the cylinder which is transformed into a cascade

[a] - influence coefficient matrix

Ajk - the normal component of velocity induced at the midpoint of
element j by the source distribution on element k of constant

unit strength

A! - the normal component of velocity induced at the midpoint of
jk element j by a distribution of constant unit strength vortices

on element k

A(q,s) - V(q,s) - n(s)

c - chord of the airfoils

CF - force coefficient in nondimensionalized form defined by Eq. 47
x

CF - force coefficient in nondimensionalized form defined by Eq. 48
y

CL  - the total lift coefficient defined by Eq. 45

CM - moment coefficient defined by Eq. 49

C - pressure coefficient defined by Eq. 43
P

d - distance to the point where the cylinder intersects the x axis
in the S plane for the exact cascade flow solution

E - source and sink strength in the exact cascade flow solution

FL  - sum of the lift forces for one airfoil of each cascade

F - force on the airfoil in the r direction
r

F - force on the airfoil in the 6 direction

F - force on the airfoil in the global x directionx

F - force on the airfoil in the global y direction
Y

G - vortex strength at A' and A" in the exact cascade flow solution

H - vortex strength at B' and B" in the exact cascade flow solution

K1  - -E + iG

K1 - complex conjugate ofK 11K

K2  - E - iG

K2 - complex conjugate of K2
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Nomenclature (Cont'd)

M - moment about a point specified in the input

N - number of equations or elements

NC - number of cascades with circulation

n1 indices of the first and last elements of the

airfoils in the m cascaden 
2

n(s) - unit vector normal to the surface at point S

[01 - onset flow matrix

P - local static pressure
sz

P - reference static pressure
Sre f

PT - total pressure, constant throughout the potential flow field

Q - volume flow rate

rref - a reference radius specified by input to the cascade program

S - complex coordinate in the S-plane

S - the circumference of an airfoil in cascade m
m

SP - dimensionless cascade spacing

U - magnitude of the average velocity vector

V - velocity vector

V - U for linear cascades, V for circular cascades
ref rfrref

V - the onset flow

V(q,s) - velocity at point s due to an infinite array of unit sources

at point q on the bodies

Vdn - downwash velocity

V - local velocity

V - upwash velocityup

AVO - cascade m's violation of the Kutta condition for 0 degree
m

onset flow
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Nomenclature (Cont'd)

AV90m  - cascade m's violation of the Kutta condition for the 90 degrees

onset flow

AV - cascade m's violation of the Kutta condition for the onset
m,n flow created by the circulation on cascade n

W - the width of the radial channel

W(S) - complex velocity in the S-plane

W(Z) - complex velocity in the Z-plane

W(T) - complex velocity in the T-plane

z. - the complex coordinate of the midpoint of element j

Z(S) - complex coordinate at points x + iy

z(q) - complex coordinate at point q = C + in

o(q) - source strength at point q

aI  - inlet flow angle

a - the angle the flow is turned through the cascade

- the mean flow angle

a E - exit flow angle

[o] - source distribution matrix

- stream function

F - the circulation on an airfoil in cascade m
m
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I. INTRODUCTION

The original Douglas Neumann Cascade Program, documented in a report

by Joseph P. Geising [l]*, solves an approximate potential solution

for the flow through two-dimensional linear cascades. This approximate

solution approaches the exact solution as the number of points describing

the body surface approaches infinity. The original program can handle

one or more cascades, the bodies can be of any arbitrary geometry, and

the bodies can be lifting or nonlifting.

The Applied Research Laboratory of The Pennsylvania State University

modified the Douglas Neumann program so that flow inward through a single

radial flow or circular cascade could be analyzed. This modified program was

developed under sponsorship by the U.S. Bureau of Reclamation to enable the

flow through wicket gates of a hydraulic turbine to be analyzed [2]. A con-

formal transformation was incorporated into the program which transformed the

circular cascade into a linear cascade. The transformed cascade could then be

analyzed in the conventional manner and the solution then transformed

back to the real plane. In Reference [21, average downstream flow angles

calculated with the modified program are compared to experimental values

obtained in an air test facility. The agreement between the experimental

and calculated flow angles is found to be quite good.

When the work of [2] was performed, much of the flexibility of the

original Douglas Neumann Cascade program was lost, and also, both linear

and circular cascades could not be analyzed with a single program. This

report documents a rewritten versioi of the Douglas Neumann program which

can handle both linear and circular cascades, multiple cascades of both

types can be analyzed, and the input parameters which define the flow

*Numbers in brackets refer to references at the end of the report.

L &. . . . . . . .. ... 7 .. . . . . .. 7 -"- - - -
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conditions through the cascades can be of several different types as in

the original program. In addition, the new program can analyze circular

cascades with the radial flow direction inward or outward. Thus, for

example, the flow through stay vanes and wicket gates of a pump-turbine

can be analyzed in both the pump and turbine mode.

With the many different types of problems to be handled by a

single program, it was thought that the program would be more orderly

if it was rewritten following the original technique, rather than

inserting a lot of new sections into the old program. The program is

now structured so that data are read in, manipulated, calculations

are performed etc. in progressive steps through the program. There are

numerous sections of the program which will not apply to a particular

problem, thus the program skips these sections and continues on with

the next section which applies. The program does not double back over

itself, except in small iteration loops, and, thus, the logic should be

easy to follow. The functions of the various sections of the new program

are also documented with comment statements throughout the program.

In the Douglas Neumann Cascade program, the flow can be analyzed

at points off the body in addition to obtaining the flow on the body

surface and the overall cascade performance. In many circumstances it

may be desirable to analyze a large number of off-body points which are

systematically spaced through the cascades. The rewritten version of the

program will generate off-body point coordinates given an initial set of

coordinates and the desired spacing. In the new version, the off-body

point coordinates are also stored in arrays separate from the body

coordinates so that the number of off-body points need not be considered

when selecting the number of points to represent the airfoils. Two



-11- 26 June 1981
AMY:cag

large arrays have been specified for storing off-body point coordinates

and the separate storage makes changing the dimensions of the arrays an

easy task, if it becomes necessary.

The use of auxiliary and core storage has also been greatly modified

in the new version of the program. The original Douglas Neumann program

used tapes to store data and transfer the data from subroutine to subroutine.

This was probably done so that only one subroutine needed to be in the

core at one time, and thus the program could be run on smaller computers.

With today's larger computers, COMMON storage can be used for transferring

data between subroutines, and the repetitious reading of data from auxiliary

storage eliminated. Auxiliary storage is currently only used to store

the original body coordinates and the very large matrices representing

the system of equations which are solved simultaneously.

For very large problems, the matrix representing the system of

equations to be solved is too large to fit in the core of most computers.

The original Douglas Neumann program utilized an iterative technique and

auxiliary storage to solve the equations for large problems. The iterative

approach required reading the equations from a file for each iteration. Since

reading of disc files is time consuming, a new procedure for solving the

equations was developed during the current rewriting of the program. Both

the new procedure and the iterative procedure are available with the rewritten

version of the program. The new procedure was shown in a sample run to signifi-

cantly reduce the computation time.

Thus far, this introduction has given a general description of the

background and development of the cascade program. The major changes made

in the rewritten version of the Douglas Neumann cascade program have also

been briefly described. In the remainder of this report, the theory used
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in the program, a description of the program and the input and output

parameters, and several check cases will be presented. A users guide

giving detailed instructions for running the program and a sample run

can be found in Appendix A. Appendix B discusses the data storage and

solution procedures, and Appendix C describes the coordinate data input

order and the necessary reordering performed in the program.

II. THEORY

2.1 Basic Equations

The basic concept of the Douglas Neumann cascade program is to apply

a distribution of sources on the surface of the bodies such that the

combination of the source distribution and the onset flow satisfy the

boundary condition on the blade surface. For the usual condition of no

flow normal to the surface, the following equation should be satisfied

everywhere on the blade surface:

-V*"- n(s) = J (q) A(q,s) dq (1)

body

where

V = the onset flow

00

n(s) = unit vector normal to the surface at point s

a(q) = source strength at point q

A(q,s) = V(q,s) - n(s)

V(q,s) = velocity at point s due to an infinite array of unit sources

at point q on the bodies.

An expression for V(q,s) can be obtained by starting with the equation

for the velocity at a point due to a single source and writing V(q,s)

as an infinite sum of the velocities induced by an infinite array of
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sources. The infinite sum can then be eliminated by manipulating the

equation and introducing the hyperbolic functions. The following equation

is obtained for V(q,s):

= 1 V ivy coth - [z(s) - 4(q)] (2)source x y 2S SP

where

z(s) = complex coordinate at point s = x + iy

t(q) = complex coordinate at point q = E + in

The expression for the velocity induced by an infinite array of vortices

is the same as Equation (2),but with the velocity vector rotated 90'.

V(q,S) i -- coth [ [z(s) - C(q)] (3)
V~,~vortex SPP

The technique employed in the Douglas Neumann program to solve

Equation (1) is to; (1) break the surface of the bodies into small segments

or elements, (2) approximate the source distribution as a constant on each

element, and (3) satisfy the boundary condition only at the element midpoint.

With these approximations, Equation (1) can be written as:

_ _ N
Vk l n. = ak  A.(q) d(q) (4)

element k

As seen in Equation (4), the independent variable s has been eliminated,

because Equation (4) is evaluated only at the midpoints of the elements.

Thus, A(qs) becomes A.(q) and can be written as:

w:.-fP coth 1 [-! j-4zj (:)]) (5)Aj(q) = V(q) n =  o {) n.(

where

z. = the complex coordinate of the midpoint of element J.
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The integral in Equation (4) can be evaluated by expressing the surface

coordinate q in terms of the global coordinates of the body in the cascade.

With the aid of Figure 1 we find that:

C(q) = + i n0 ) + q(cos ak + i sin )= C0  + qeik (6)

Equation (6) can then be differentiated to yield an expression for dq,

which is needed to perform the integration.

dq = d~e-i k (7)

Substituting Equations (5) and (7) into the integral and expressing the

integration limits as the end points of element k as defined in Figure 1

yields: C

Aj(q) dq = n.j -- coth [- (zj - C)] d e -  (8)
SPP SP

element k C1

Carrying out the integration in Equation (8), provides an expression for

Ajk, the normal velocity induced at the midpoint of element j due to the

source distribution on element k of constant unit strength.

dq e -il sinh z (z k (9

A I A.(q) njk j( dq -e in-sinh C2k) 
element k S (

Substituting A as defined in Equation (9) into Equation (4) yields the
jk

basic equation used in the Douglas Neumann program.

N _

I Ajk 0k = -V. " nj (10)
k=l

Equation (10) is the approximate form of Equation (1) and it must be

satisfied for each element of the cascades. Equation (10) can be written

for each element yielding the following matrix equation:
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n BODY

2 k k

Ok
SELEMENT k

/
/ k = F0 +in 0

Clk = + i7/

C2k = 2 + i)72

Figure 1. A Typical Straight Line Element of the Body Surface

II
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The set of equations represented by Equation (11) are solved simultaneously

in the Douglas Neumann program for the unknown source strength of each element.

As seen by examining Equation (9), the terms of the A matrix are only functions

of element coordinates and, thus, can be calculated from the cascade geometries

which are input to the program. The onset flows, appearing in the matrix on

the right hand side of Equation (11), will be discussed in the following

section.

2.2 Basic Solutions and Combination Equations

Equation (11) can be solved for any given onset flow V . However,

for airfoils in a cascade, an addition boundary condition, must also be

satisfied. Circulation, which arises around the airfoils, enables the

Kutta condition to be met. For cascades, this circulation induces an

upwash and downwash velocity far upstream and downstream, respectively,

relative to the mean cascade velocity. These induced velocities are

illustrated in Figure 2. Both the circulation and the mean velocity must

be accounted for in Equation (11). However, for the typical cascade

problem, the magnitude of the circulation is usually unknown and the mean

flow angle may not be given. The operating parameter which may be given

for a cascade analysis will be either:

1. c119 the inlet flow angle

2. A, the angle the flow is turned through the cascade = I E

MOET
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3. x, the mean flow angle

or 4. CLO the total lift coefficient of all the cascades.

The angles aV, a and a E are shown in Figure 2.

In the Douglas Neumann program, several basic solutions are calculated,

each of which satisfy the condition of zero velocity normal to the body

surfaces. Since the governing equation is linear, any number of solutions

can be scaled and added without violating the governing equation or the

surface boundary condition. The technique employed by the Douglas Neumann

program is to combine the basic solutions such that the cascade operating

parameter and Kutta condition are satisfied.

The basic solutions which are used are calculated for each of the

following onset flows:

1. A uniform flow normal to the cascade(s), i.e., a = 0

2. A uniform flow parallel to the cascade(s), i.e., a = 900

3. A nonuniform flow created by the circulation on the

airfoils of cascade 1.

4. A nonuniform flow, like flow 3, for each additional cascade

with circulation.

The terms -V * n. in Equation (11) for onset flows 1 and 2 areJ

simply sin(a.) and -cos(S.), where 8 is the angle of the element as

previously illustrated in Figure 1. For the nonuniform onset flows,

the effects of all the elements of an airfoil in one cascade on a particular

element must be summed to obtain ':he velocity induced by the circulation.

Since the only difference in the velocity induced by a vortex or a source

distribution is that the velocity vector is rotated 90 degrees, the calcula-

tion performed in the program to evaluate Equation (9) can also be used to

calculate the onset flows created by the circulation of the different
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cascades. The normal component of the onset flow for element j, due

to circulation on the airfoils in cascade m can be written as:

m 2 A
V •n -- Y Ajk (12)3 M  k=nl 1 ,k

where r = the circulation on cascade n
m

S = the circumference of an airfoil in cascade mm

A! = the normal component of the velocity induced at the midpoint
3k

of element j by a distribution of constant unit strength

vortices on element k. (Since the dot produce in Equation (9)

is performed by complex number multiplication, A!k is obtained

from the real part of the resulting number while Ajk is the

imaginary part.)

n and n2 = the indices of the first and last elements of the airfoils

in the m cascade.

The value of r in Equation (12) is unknown at the time the basicm

solutions are calculated. Thus, the basic solutions for the onset flows

due to circulation are obtained with ' = 1. The real magnitude of rm m

is determined when the basic solutions are combined to satisfy the Kutta

condition.

Under most circumstances, the Kutta condition is violated by each

of the basic solutions. An approximate measure of the amount each solution

violates the Kutta condition can be obtained by computing the difference in

the tangential velocity above and below the trailing edge (i.e. at the

midpoint of the first and last element of each cascade). The basic

solutions must be combined such that the cascade operating parameter

is met and the combined violations of the Kutta condition are zero. The
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following equations express these conditions and provide a means for

evaluating the unknown values of r .m

AV01 U cos a + AV901 U sin a + AV IFI + AV 2F2 + =0

AV02 U cos a + AV902 U sin a + AV21FI + AV 22F2 + =0

(13)

AV0NC U cos + AV90NC U sin o + AVNcFI + AV Nc,2F2 +... 0

where:

AVO = cascade m's violation of the Kutta condition for the
m

0 degree onset flow.

AV90 = cascade m's violation of the Kutta condition for the
m

90 degree onset flow.

AV = cascade m's violation of the Kutta condition for the
m, n

onset flow created by the circulation on cascade n.

NC = number of cascades with circulation.

a = cascade average flow angle = tan-i 2tanQI+tanxE

If a is the given cascade operating parameter, Equation (14) can be

solved for the unknown values of F . For this case, Equation (13) ism

rewritten in matrix form, Equation (14), which can then be solved by

matrix reduction. For the usual case of one cascade, the solution is

trivial.
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AV11 AV12 . AV1,NC r1 AV01 Cos 1 + AV901 sin

AV AV AV r2  AVO cos a + AV90 sin a
21 22 .. 2,NC 2 2 2

- -U (14)

AVNC,l AVNC,2 ... AVNC,NC rNC AVONC Cos + AV90NC sin 

For the cases when a is not the given operating parameter, Equation (14)

cannot be used directly tc solve for the r 's; because, explicit relationsm

do not exist between ( and al, CL, or Au. When aI is the given input

parameter, a matrix equation which contains the additional unknown a is

solved. For the other cases when CL or Aa are given, the program must

iterate to obtain the additional unknown a.

To obtain the matrix equation which contains a as an unknown and

XI as a known parameter, an additional equation is required. By examining

the inlet velocity triangle in Figure 2, the following equation can be

obtained:

U cos a tan a -U sin a = Vup (15)

The upwash velocity, V up, in Equation (15) is unknown. However, since

V is the induced velocity due to the circulation on the airfoils, itup

is known that Irm = 2SP V U. The upwash velocity can therefore be

eliminated from Equation (15) and after rearranging it yields the following:

tan a + [F/U cos a + 2/U cos a ... r ACT cos a]/2SP = tan a (16)
1 2 NC I

Modifying Equation (14) algebraically and inserting Equation (16)

provides the necessary matrix equation which can be solved for a and the

r m 's for a given al

m
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UAV901 AVl1 AV12 - AVl,NC tan a -UAVO1

UAV902  AV21  AV22  - AV 2,NC F1 /U cos a -UAVO 2

* -•*(17)

UAV9ONC AVNCl AVNc 2  AVNcNc FNC _/U cos a -UAVONc

1 1 1 /Ucosa tana 12SP 2SP 2SP FNCo

LL

If Act or CL are given as the input parameters, the program will

Ltrt sn nasmdvleo ai qain(4,utlteai

L m

equations are:

NC
C L Yrm (18)
L cm=1 m

and

NCCos aV

tan Am =
n1- mNC 12 (19)

1 2S [--s r1 j

Equation (18) is derived from the definition of CL and the basic

relationship between circulation and the lifting force. Equation (19)

can be derived by writing tan Aa as tan(a I - E), expanding tan(a I - E)

into an equation with tan aI and tan a E5 and then using the velocity

triangle to express tan aI and tan E in terms of Fm, sin a and cos a.

mi
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2.3 Transformation of Circular Cascades

Up to this point, the analysis has dealt with linear infinite cascades,

and is applicable to the blade sections of axial flow machines. For radial

flow machines, it is also desirable to be able to analyze inlet guide

vanes of turbines and diffuser vanes of pumps and compressors. In the

preceding analysis, linear cascades are handled by the concept that

Equations (2) and (3) were derived for the velocities induced by infinite

arrays of sources and vortices of constant spacing SP. The flow field

thus repeats every spacing SP and satisfying boundary conditions on one

airfoil of a cascade automatically satisfies the boundary conditions on

all the airfoils of that cascade.

A circular cascade can also be considered an infinite cascade;

because we can continually observe points around the cascade, and if

all the vanes are identical the flow pattern repeats after each vane.

If all the vanes are different, the vanes can be considered as several

infinite cascades with the flow pattern repeating after each revolution.

Rather than deriving equations similar to Equations (2) and (3) for

circular cascades, the approach taken was to mathematically transform

the circular cascades into linear cascades and then use the existing

analysis. Since the flow is being analyzed using potential theory, a

conformal transformation can be used and the same governing equations

and boundary conditions will apply in both the real and transformed

planes. The transformation used, is performed by the following equations

and is illustrated in Figure 3:

y= 0 (20)

x = In r (21)
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Figure 3. Schematic of a Circular Cascade (Above) Which is
Transformed Into the Linear Cascade (Below)
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In addition to the equations for transforming the circular cascade

geometry into a linear cascade, relationships are also required for

relating the velocities in the two planes. From the velocities, the

pressure field can then be calculated. The necessary relationships can

be derived by first defining a stream function in the r-e plane such

that:

lae (22)r r ge

and

e - (23)

It is also necessary to define the stream function in the x-y plane such

that:

V =-y (24)

V (25)

y ax

From the chain rule we know that

-LO = i ypv (26)
DO ay ae

and

= = q) ax (27)

ar ax ;r

Differentiating Equations (20) and (21) we find that - - 1 and
Do

-r r Substituting these relations and Equations (22) through (25)Dr r

into Equations (26) and (27) yields the desired relationship between

the velocity components in the real and transformed planes.

V = 1 V (28)
r r x

V (29)
C r v

EL
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By combining the velocity components into the resultant velocity a similar

equation relating the resultant velocities is obtained:

/V Vi Vy) ,V2 +V2 1

= VV +x 1 V) 2 + ) =(1 +V V2 (30)Vre r + V r = r vx y = x

III. PROGRAM DESCRIPTION

The purpose of this section is to describe the key parameters and

variables found in the program input and output, discuss the types of

cascades which can be analyzed, and explain the structure of the program

itself. The input format required to run the program is not presented

in this section, but is presented in the users guide in Appendix A.

In part one of this section, the program parameters and variables are

defined and their application to the different types of cascades are

discussed. The parameters used to nondimensionalize the data are also

described. In part two, the restrictions which apply to the three basic

types of cascades are presented, and ways for circumventing these

restrictions to enable some unusual cascade geometries to be analyzed

are explained. In the final part of this section, the structure of the

program and the functions of each of the major subroutines are described.

3.1 Definition of Key Input and Output Variables

A convenient place to start the discussion of input and output

variables is with the angles which describe the flow and the orienta-

tion of the airfoils in the cascades. The flow angles and the stagger

angle for a linear cascade are illustrated in Figure 2. In terms

of the velocity components, the inlet angle I and the exit angle a E

can be defined as:
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V

a, = tan-1  vYI (31)

yV
aE = tan- vY'E (32)

x

For a circular cascade, the definitions are similar with the x and y

components of velocity replaced by the r and e components, respectively.

Thus, for a circular cascade with the radial flow direction inward or

outward, the inlet and exit flow angles are defined as:

a, = tan -i V-I )  (33)

aE= tan 1  V (34)
rE

Equations (31) through (34) yield the sign which is consistent with the

chosen convention. All flow angles for both linear and circular cascades

are positive in the counterclockwise direction. The stagger angle for

circular cascades is also measured in a counterclockwise direction, while

the stagger angle for linear cascades is the only angle measured in a

clockwise direction. The opposite sign convention was chosen for the

linear cascade stagger angle to be consistent with the original Douglas

Neumann program. For a typical cascade configuration as in Figure 2,

the chosen convention also yields a positive lift corresponding to a

positive stagger angle when the cascade is subjected to an axial inlet

flow.

Two other angles which are sometimes used as input to the Douglas

Neumann program are the flow turning angle Aa and the cascade mean flow

angle a. These angles are defined as follows:
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Aa = a I a E (35)

- tan aI + tan aE

a = tan 1  1 2 t E) (36)

Tan a and tan aE in Equation (36) can be expressed in terms of the x and

y velocity components for a linear cascade. Making these substitutions

would show that a is the angle of the average velocity vector through the

cascades, and thus a has physical significance for linear cascades. For

circular cascades, the physical significance of a is not as clear. Since

the magnitudes of the inlet and exit velocities for circular cascades

depend on the radius, no unique average velocity can be defined without

specifying the radii. The inlet and exit velocities can each be converted

to equivalent velocities at a common radius by applying conservation of

mass (rVr = constant) and conservation of angular momentum (rV. = constant).

The angle of the average of these equivalent velocities is a. At the

common radius Vr is equal to VrE just as Vx is equal to for aI Vr'VI XE

linear cascade.

The angles a, ai, a E and Act describe the overall characteristics

of the flow through the cascade. However, the bulk of the output from

the program is the velocity and pressure on the airfoil surfaces and at

specified off-body points in the flow field. The velocities and pressures

are both presented in nondimensional form, thus, the normalizing velocity

for the various types of cascades should be discussed. For linear cascades,

the magnitude U of the average velocity vector V is used for non-avg
dimensionalizing velocity and pressure. The vector Vavg is illustrated

in Figure 2. From the figure it can be seen that:
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V cosa cos a
U V V E (37)

Cosa I Cosca E cos a

For a circular cascade, an average velocity vector is difficult to

define, therefore, a normalizing velocity with more physical significance

was selected. With uniform flow, the volume flow rate Q for a radial

flow system is V 21r rW. Even though the flow is not uniform through ar

cascade, the relationship for Q can be used to define a meaningful reference

velocity by first writing:

V r = Q/2nW = constant (38)r

Since V r is equal to a constant, selecting a reference radius providesr

a reference velocity which can be used to nondimensionalize the data for

circular cascades. The quantity, W, is the width of the radial channel.

V 1 _Q = constant (39)
r ref rre f 2TW rre f

The value rre f is given as input to the program and was selected as the

radius which positions the airfoils in a cascade. The users guide in

Appendix A will further illustrate rref.

Equation (39) defines the reference velocity for a circular cascade,

but it is recalled that the flow field solution is originally obtained

in a transformed plane where the reference velocity is U. A relationship

between U in the transformed plane and Vr is therefore required in the
ref

program. Substituting r ref for r and V for V in Equation (28) yields:rre r

1
V = - V (40)
rref re f x

Aref
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From Equation (37) it is known that V = U cos a, thus:x

V =--- Ucos a (41)
rref ref

Equation (30), which transforms a velocity in the x-y plane to a velocity

in the r-6 plane, can now be written in nondimensional form as:

VrO r ref Vxy (42)

V r U cosarref

Equations similar to Equation (42) can be written for the velocity

components Vr and Ve by dividing Equations (28) and (29) by Equation (41).

All velocities in the output of the current version of the Douglas

Neumann program are nondimensionalized by V and U for circular or

linear cascades, respectively. The pressures on the body surfaces and

at off-body points are also nondimensionalized by V and U. The
ref

pressure coefficient C is defined as:
p

PP P= 1-_V f = 2. sref (3
Cpef 1 V2 ()

r2 ref

where Vref = U for linear cascades

Vref = V for circular cascades
ref

As seen from Equation (43), the pressure coefficient can be calculated

from the local velocity V at the point under consideration, but Cp also

represents the difference between the local static pressure and a

reference static pressure P The reference static pressure iss ref"

defined as follows:

1 V2
s ref = PT2 Vref (44)
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where Vref 
= U or Vrref

PT = total pressure, which is constant throughout the potential

flow field

The remaining parameters to be defined again involve overall cascade

properties rather than local pressures or velocities. For linear cascades,

a lift coefficient CL, x and y force coefficients CF and C , and a
x y

moment coefficient CM need to be defined. The lift coefficient CL

represents the total lift of all the cascades; and if it is not an

input parameter, the program calculates CL from the total circulation

of the one or more cascades. If only one cascade is being analyzed,

C is printed at the beginning of each page along with the other

L

coefficients. However, for a multi-cascade analysis, CL is printed at

the end of the output of all the cascades so that it is not interpreted

as the lift coefficient of a particular cascade.

The circulation on a cascade induces an upwash and downwash on

the flow relative to the average flow through the cascade. For this

reason, the lift force is perpendicular to the average velocity vector

Vavg. CL is defined by the following equation and is calculated in the

program by the subsequent equation:

FL

C- L (45)
L 12

YU cW

where F = sum of the lift forces for one airfoil of each cascade.
L

FL is perpendicular to V
avg

c = chord = 1

W = span, (W = 1 so that CL represents the lift per unit span)
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NC

CL= N C (46)
m=1

where r = circulation on an airfoil in cascade m
m

NC = number of cascades

c = chord = 1

The coefficients CF , CF and CM are obtained in a different manner
x y

than CL, because they are computed by integrating the pressure distributions

around the airfoils. For a multicascade analysis, coefficients are computed

for each cascade. CF  and CF  nondimensionally represent the forces on
x y

the airfoils in the x and y directions, respectively, in the cascade global

coordinate system. The moment represented by CM is computed about a point

specified in the input. These coefficients are defined as:

F
CF = i c (47)

F 12x yU cW

F
C =____l (48)
F 1 2y - U cW

M (49)
CM 1 22

IPU c W

where F = force on the airfoil in the global x directionx

F = force on the airfoil in the global y directiony

M = moment about a point specified in the input (a positive

moment is counterclockwise)

c = chord of the airfoils in the cascade for which the

coefficients are calculated
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C is related to C and C through the mean flow angle a. If
L F F

x ythere is more than one cascade, the force coefficients can be summed

and used to compute CL.

NC NC
CL = X CFy m ccoscz- a CFx c sin a (50)

mml m=l m

Equation (50) is not used in the program, but it is provided to explain

the relationship between CFx, CFy and CL. If CL is hand calcuiated from

Equation (50), the resulting value should only differ from the computer

value by the small error incurred when integrating the pressure distributions

for CFx and CF . The chord c is required in Equation (50) for multiple

cascade analyses where all the airfoils may not have c=l.

For circular cascades, CL is not computed because an average

velocity vector is not easily defined and C L would have little meaning.

Two force coefficients and a moment coefficient are computed for each

circular cascade by integrating the pressure distributions. The following

equations define these coefficients and complete the definition and

discussion of the input and output variables.

F
CF - r (51)
r 1PV cW

2 rref

__________________ (52)F 1 2
e refV cWrref

cmM !2 (53)

rref
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where F = force on the airfoil in the r direction
r

Fe = force on the airfoil in the 0 direction

M = moment about a point specified in the input (a positive

moment is counterclockwise

3.2 Cascade Modeling

There are three basic types of cascades which the current version of

the Douglas Neumann cascade program can handle. The program can analyze

linear cascades, circular cascades with the radial flow inward, and

circular cascades with the radial flow outward. In addition to single

cascade analyses, multiple cascades can be analyzed as a system. For

each of the various types of cascade analyses, the following restrictions

apply to the cascades:

1. All the bodies of a particular cascade must be equally spaced.

2. All the bodies of a particular cascade must be identical.

3. For an analysis with multiple cascades, all the cascades must

have the same spacing between the bodies.

4. No cascade can move relative to another cascade.

The last restriction is the only restriction which cannot be overcome

through cascade modeling. Under no circumstance can a cascade move

relative to another cascade because this would constitute an unsteady

flow field.

For simple cascade geometries, no modeling is involved in the program

input. The user simply inputs to the program the airfoil geometry and

cascade parameters such as spacing, stagger angle, inlet flow angle,

etc. However, for unusual cascade geometries where one of the first

three restrictions is violated, a cascade can often be modeled as several

cascades to overcome the restrictions.
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Two examples will be used to illustrate cascade modeling. For the

first example, the cascade of circular cylinders shown in Figure 4 has

unequal spacing between the cylinders and thus violates the first

restriction. In this case, although the distances from one cylinder

to the next cylinders above and below are not equal, it is seen that the

cascade pattern repeats every spacing SP. The single cascade of unequally

spaced cylinders can thus be modeled as two cascades. Both cascades will

have the same spacing between the cylinders, with the second cascade

offset from the first cascade by the distance ADDY shown in the figure.

The numbers on the cylinders in Figure 4 identify the cylinders belonging

to the two cascades.

Although in the first example the cylinders of cascade one and two

have the same diameter, the two cascades could have different size or

differently shaped bodies. Thus, the same procedure can be used to

model cascades with bodies of different geometries. The process of

representing differently shaped bodies or equally spaced bodies as different

cascades could be carried to an extreme where a random cluster of differently

shaped two-dimensional objects could be analyzed. Each object could be

represented as a cascade, and the spacing could be made very large such

that the effect of other members of the same cascade would be r.egligible.

This extreme situation may require a very large number of points to represent

the different body geometries and, thus, may not be practical. However,

the extreme case does illustrate the flexibility of the program made

available by the ability of the program to analyze multiple cascades.

It should be possible to model most ,cascades of engineering significance

with a reasonably number of cascades which will not violate any of the

program restrictions.
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4SID
ADDY

THE UNEQUAL SPACINGS VIOLATE
A PROGRAM RESTRICTION IF THE
CYLINDERS ARE CONSIDERED ONE
CASCADE

0

Figure 4. 111Iustration (f How a Cascade of Cylinders With Unequal
Spacing Can be Modeled as Two Cascades of Equal Spacing S.,
Offset by the Distance ADDY
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The second example of cascade modeling illustrates an analysis of

a cascade with apparently differently shaped airfoils. Figure 5

is a schematic of stay vanes and wicket gates of a hydraulic turbine.

It is noticed from the figure that the stay vanes have five different

geometries. Over most of the circumference the stay vane geometry

is constant with either stay vane A or stay vane B being employed. In

the regions where the stay vane geometry does not vary, the flow can

easily be analyzed with the current version of the Douglas Neumann

program. The wicket geometry and the appropriate stay vane geometry

are input to the program, neglecting the other stay vane geometries

which are remote from the area of interest.

Neglecting the variation of the stay vane geometry, the wicket

gates and stay vanes represent two cascades which do not violate any

of the program restrictions. Suppose, however, that it is desirable

to analyze the flow in the region of stay vane D, where it is seen

from Figure 5 that there are five different stay vane geometries side

by side. Since there is no symmetry in the distribution of stay vane

geometries, to analyze the entire flow field including the five different

stay vane geometries would require 48 cascades. Each wicket gate and

stay vane would need to be represented as a separate cascade with the

spacing SP=360 ° . The number of points required to represent 48 cascades

certainly makes this approach unrealistic.

A more realistic approach to analyze the flow near vane D is to

only consider the two vanes on both sides of vane D, and after these

vanes allow the pattern to repeat. In this way, the effects of the two

nearest vanes in both directions is included, but the effects of the true

vane shapes beyond the first two vanes are neglected in the model. This
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VANE C VANE D

VANE BVANE E

VANE A

24 STAY VANES

Figure 5. Wicket Cates and Stay Vanes or a Hydraulic Turbine
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approach is illustrated in Figure 6. In order that the wicket gate

spacing be the same as the stay vane spacing, the wicket gates corresponding

to the five stay vanes must also be modeled as different cascades. The

need to represent the wicket gates as five cascades, even though they

have the same geometry, is also apparent from the fact that they are

each downstream of a different stay vane geometry and will each have a

different flow solution. The flow in the region of stay vane D can

therefore be modeled with ten cascades, the maximum number the program is

currently set up to handle.

In Figure 6 the ten cascades representing the wicket gates and stay

vanes near vane D are numbered to identify the members of the various

cascades. The original vane shapes are also identified by the letters.

It is seen that each cascade has the same spacing SP and after the spacing

SP the pattern repeats. The relative position of the various cascades is

specified by the radius and the angles ADDY1 , ADDY2 , etc.

It is important to remember when modeling different vane shapes,

as in the preceding example, that the vane of primary concern should be

kept in the middle of the group. This will minimize errors caused by

not having the true vane shape a few vanes from the place of concern.

For example, the model shown in Figure 6 should not be used to analyze

the flow near vane C, but instead, a new model with two true vanes on

both sides of vane C should be employed.

Note: A circular cascade becomes an infinite linear cascade in the

transformed plane because each succeeding revolution around the circular

cascade will generate more of the same airfoils. Tn tile example where

there were 24 stay vanes, the true pattern would repeat every 24 vanes.

However, the stay vanes were modeled as 5 cascades which cannot be evenly
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divided into 24. Therefore, the pattern will not repeat every 24 vanes

as it should. This fact may be somewhat disturbing because transforming

the linear cascade back to the circular cascade will result in several

different vane shapes occupying the same location. In the transformed

plane, where the flow field solution is originally obtained, the airfoils

which will occupy the same location in the real plane are 24 vanes apart.

Thus, they have essentially no effect on each other, and the fact that

the pattern does not repeat every 24 vanes is inconsequential. The

author has not verified this conclusion with computer runs of the program,

therefore, it may be wise for the user to do so if the number of cascades

used in modeling a circular cascade cannot be divided evenly into the

total number of vanes.

3.3 Structure of the Program

The current version of the Douglas Neumann cascade program consists

of a main program and five major subroutines. The main program's only

function is to call the appropriate major subroutines. Each of the major

subroutines will be described in the following paragraphs. Besides the

CALL statements for the subroutines, the main program also contains two

logical IF statements. One IF statement selects SUBROUTINE PART3 or

SUBROUTINE PART4 for solving the set of simultaneous equations depending

on the size of the problem. The other IF statement directs the program

to go to SUBROUTINE PART5 following SUBROUTINE PART1 for cases where the

basic solutions of the previous case can be used for the present case. The

main program will continue to process cases until an input code directs the

program to be terminated. If cases of similar geometry are run where

only the flow angle or lift coefficient is changed, the same basic

solutions can be used for each case. Subsequent to the first solution
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when the basic solutions are obtained, the program only needs to solve

the combination equations. This feature will save a considerable amount

of computation time when several solutions with the same cascade geometry

but different flow conditions are required:

SUBROUTINE PART1:

The major purpose of SUBROUTINY PART1 is to read the input data

and do any of the preliminary calculations which are necessary before

the set of simultaneous equations can be set up and solved. One of

the first cards to be read is a control card specifying the type of

cascade and giving other run control information. Cascade parameters

are read next, followed by the airfoil coordinate data. The airfoil

coordinate data is usually read from cards. However, if the airfoil

geometry is the same as the previous case, the data can be read from

a file. For runs where a particular airfoil geometry is repeated for

modeling purposes, as in the stay vane - wicket gate example in the preceding

subsection, SUBROUTINE PART1 will generate the airfoil coordinate data

for the similar airfoils following the input of the first airfoil data.

After the coordinate data have been input, the data are stored in a file

before the required maniuplations begin.

For circular cascades, SUBROUTINE PART1 reorders the coordinate

data so that in the transformed plane the data will have the same order

as data for linear cascades. The necessity of reordering the data is

described in more detail in Appendix C. For circular cascades with the

radial flow direction inward, the coordinate data are put in reverse

order. If the radial flow direction is outward, the starting point of

the data is shifted to the trailing edge of the airfoil for the current

flow direction.
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SUBROUTINE PARTI next scales the coordinate data by the value of

the chord given for each cascade. The coordinate data are then converted

from local to global coordinates, which involves translating and rotating

the coordinates so the airfoils have the proper location and orientation

in the flow field. For circular cascades, the transformation is carried

out at the same time the coordinates are converted to global coordinates.

Coordinates of the element midpoints are determined and the sine and cosine

of the angle of the elements are calculated. The airfoil coordinates are

put in complex form to be used in the complex arithmetic involved in

setting up the A matrix in Equation (11).

The last section of SUBROUTINE PART1 reads in or generates the

coordinates of off-body points where the flow is to be determined. The

coordinates of each off-body point can simply be read in from a card.

However, in many cases it is desirable to locate a prescribed number of

off-body points equally spaced across a section of the flow at a constant

x or r value. Under these circumstances, the program can generate the

coordinates of the off-body points after being given the initial data

for a set of points. By supplying the program with the coordinates of

the first point of the set, the number of off-body points in the set,

and the increment Ay or A8 by which to locate the remaining points, the

program will generate the required coordinates. Any number of sets of

off-body points can be used, provided the total number of off-body points

does not exceed the array dimensions. For circular cascades, the off-body

points are transformed to the linear cascade by SUBROUTINE PARTI.
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SUBROUTINE PART2:

In SUBROUTINE PART2, the set of simultaneous equations which are

solved for the source distributions on the airfoils are set up. Setting

up the equations consists of calculating the values of the A matrix

and determining the onset flows in Equation (11). Complex arithmetic

is used to calculate the A matrix, such that the real and imaginary parts

yield the coefficients for the flow induced both tangent and normal to

the airfoil surface. The coefficients representing the flow induced normal

to the surface are the values in the A matrix. The coefficients for

the flow induced tangent to the surface are stored and later used to

calculate the velocity on the airfoil surfaces after the source strengths

are known. The sum of the real parts and the sum of the imaginary parts

of the coefficients for each row of the matrix are also calculated in

SUBROUTINE PART2. The sum of the real parts is the term 12 A' in
k=n jk

Equation (12) and provides the onset flows induced normal to the element

surfaces by circulation. The sums of the imaginary parts provide the

velocities induced tangent to the elements by circulation and are required

to calculate the final velocities at the element midpoints.

SUBROUTINE PART3 and SUBROUTINE PART4:

The set of simultaneous equations for each basic solution are solved

in either SUBROUTINE PART3 or SUBROUTINE PART4 depending on the size of the

problem. SUBROUTINE PART4 reads the coefficients and onsets flows cal-

culated in SUBROUTINE PART2 from files and stores the values in arrays.

SUBROUTINE MIS1 is then called, which solves the equations by matrix

reduction. Since SUBROUTINE PART4 and MISI require the entire A matrix

and onset flow matrices to be in the computer core at once, the use of

these subroutines is restricted by the size of the matrices which can be

accommodated in the core.
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There are currently two versions of SUBROUTINE PART3 which will

solve the equations when it is not practical or possible to have the

entire A matrix in the computer core. The original Douglas Neumann

cascade program employed an iterative technique to solve the equations

for large problems. This iterative technique is found in one of the

two current versions of SUBROUTINE PART3. A disadvantage of the iterative

approach is that the complete set of equations must be read from auxiliary

storage for each iteration. Reading data from auxiliary storage is one

of the slower operations of computer processing and, thus, may greatly

increase the computation time.

To reduce the computation time for large problems, a new solution

procedure was developed at ARL/PSU during the current rewriting of the

Douglas Neumann program. The new procedure found in the second version

of SUBROUTINE PART3 reduces the A matrix by operating on blocks of rows

of the A matrix in the core. The procedure is designed to take advantage

of whatever core space is available and it continually optimizes the equation

storage by increasing the number of equations in the core as the number of

nonzero terms in each equation decreases. Comparative computer runs

solving the same problem using the three solution procedures show that

the new procedure requires the least amount of computer time.

The three available solution procedures found in SUBROUTINE PART4

and the two versions of SUBROUTINE PART3 are described in more detail

in Appendix B. Discussions of the storage requirements and the major

advantages and disadvantages of each procedure are included. Appendix B

also describes the program dimension statements so that the user can

choose a solution procedure and modify the array dimensions to match the

program for a particular problem to the computer system.
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SUBROUTINE PART5:

The last major subroutine is SUBROUTINE PART5. Its first function

is to set up and solve the combination equations. The solution of the

combination equations enables the basic solutions to be combined such that

the cascade operating condition and the Kutta condition are satisfied. As

discussed in Section 2.2, the combination equations are based on a AV

across the trailing edge which represents each of the basic solution's

violation of the Kutta condition. The beginning of SUBROUTINE PART5

calculates the required AV's.

Following the determination of the AV's there are four sections of

the subroutine which solve the combination equations depending on which

of the four possible input parameters were given. If a or a I is the given

cascade operating parameter, the combination equations are solved by matrix

reduction. If CL or Aa is given, the program iterates to determine the

value of a the flow must have to yield the given CL or Aa. The solution

of the combination equations produces the value of the circulation for

each cascade.

Following the solution of the combination equations, SUBROUTINE PART5

calculates the velocity at the midpoint of each element. This is done by

adding the onset velocities and the velocities induced by all the elements

for each of the basic solutions. When adding solutions, the velocities

of the appropriate basic solutions are scaled by sin a, cos a or the value

of the circulation for each cascade. For circular cascades, the velocities

are next transformed back to the real plane and the data are reordered to

correspond to the data original input order. The airfoil pressure distribu-

tion is calculated from the velocities and then is integrated to yield
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force and moment coefficients. The results are printed and the velocity

calculation process repeats for the other cascades of a multi-cascade

analysis. The last section of SUBROUTINE PART5 calculates the velocity

components and the pressure at each of the specified off-body calculation

points.

IV. PROGRAM VERIFICATION

4.1 Methods of Verification

Every computer program should be checked to assure that it is calculating

what it was intended to calculate. Since the Douglas Neumann program yields

an approximate solution to a potential flow problem, the obvious means

of verifying the program is to analyze the flow through a cascade for which

an exact potential flow solution exists. In this section, results from the

current rewritten version of the Douglas Neumann program are compared to

exact solutions for various types of cascades. The exact solutions are

obtained by using conformal transformations to convert the potential flow

around a single cylinder to the flow around airfoils in infinite cascades.

Besides the comparisons with exact solutions, one additional comparison

is made between the results from the current version of the program and

results from the original version which were presented in Reference [1].

This comparison was made to assure the current version of the program

can analyze multiple cascades of lifting and nonlifting bodies as did the

original program.

It is also important to know how well a computer program predicts

real phenomena or experimental data. However, the degree to which

calculated results match experimental data is not necessarily a check
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on the proper functioning of a computer program. Instead, comparisons

with experimental data are checks on how well the simplifying assumptions

and governing equations represent the real situation. Comparisons of

results from the Douglas Neumann program and experimental data have been

made in other reports but will not be made here. In Reference [1], measured

pressure distributions for linear cascades are compared to calculated results

from the program. Measured and calculated flow angles for a circular cascade

with the radial flow direction inward are compared in Reference [2].

With the current version of the Douglas Neumann program having the

additional capability of analyzing circular cascades, several new solutions

as well as the original solutions for linear cascades required verifica-

tion. The types of cascades for which the solutions required verification

were:

1. A linear cascade.

2. A circular cascade with the radial flow inward.

3. A circular cascade with the radial flow outward.

4. Multiple cascades of each of the first three types.

5. Multiple cascades consisting of both lifting and nonlifting bodies.

Solutions for the first three types of cascades were verified by comparing

them with their corresponding exact analytical solution. For multiple

cascades of each type, a single cascade was modeled as several cascades,

thus the same exact solution could be used to verify both single and

multiple cascades. As previously mentioned, the fifth type of cascade

solution was verified by comparing the results from the current version

of the program with the results presented in Figure 5 of Reference [1].
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The cascade parameters CL (CL is a parameter for linear cascades

only), I' c, and Aa were all known from the exact solutions for the

various types of cascades. Thus, each of the cascade parameters could

be used as input to the program to check the various input options. Using

each of the different cascade parameters as input, the other parameters

were calculated by the program. In this way, the cascade parameters

calculated by the program were verified. As required, the calculated

pressure distributions on the airfoils were nearly identical regardless

of the input parameter. Velocity components at points off the bodies

were also obtained from the exact analytical solutions and were used to

check the off-body data calculated by the program.

4.2 Exact Analytical Cascade Solutions

Exact potential flow solutions for linear and circular cascades can

be obtained from the flow around a circular cylinder by employing a series

of conformal transformations. The transformations used to obtain a linear

cascade are the same as those found in References [1] and [3]. An additional

transformation was then employed to transform the linear cascade to a

circular cascade.

Flow around a circular cylinder is generated by locating a pair

of sources and vortices at points B' and B' and a pair of sinks and

vortices at points A' and A" shown in the S-plane of Figure 7. The

locations of the source, sink and vortex pairs determines the position

of the cylinder. The position of the cylinder in turn determines the

final shape of the airfoils after the transformation. To form a cylinder,

the sink and vortex at point A' must mirror the sink and vortex at A",

and similarly the singularities at B' ind B" must do the same. The two

points of each pair lie on the same radial line and the radial distance
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from the center of the cylinder to the inner point is the inverse of

the radial distance to the outer point (i.e. if A' is r from the center,

A" is i/r from the center). To satisfy continuity, the source and the

sink have the same strength. Together, the sourg, si-jk and vortex

strengths determine the inlet flow angle and must also be specified so

as to satisfy the Kutta condition. With this brief background, the

following parameters and coordinates provide the necessary information

for the cylinder used:

a = radius of the cylinder = 1.0

d = distance to the point where the cylinder intersects

the x axis (this point becomes the T.E. of the airfoils)
S

d .8460254

Point Coordinates

Center of the Circle (-0.02, 0.5)

A' (1.06605, 0.0)

A" (0.739739, 0.150228)

B' (-1.088605, 0.0)

B" (-0.787722, 0.140783)

Two sequential transformations are used to map the cylinder in the

complex S-plane into a cascade of airfoils. The first transformation

maps the cylinder into a single airfoil shape in the complex Q-plane

as illustrated in Figure 7. This transformation is performed by the

following equation:
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Q-rd [(S- d r

Q + rd ;+ d) (54)

where r = trailing-edge-angle constant = 1.85

Q = complex coordinates in the Q-plane

S = complex coordinates in the S-plane

The second transformation maps the airfoil shape in the complex

Q-plane into a cascade of airfoils in the complex Z-plane. This

transformation is:

Z = in f2_ )(55)

A and B are the complex coordinates of the points in the 0-plane c(rresponding

to the points A' and B'. Points A and B are illustrated in Figure 7. The

numerical value of A and B can be found by plugging the given coordinates

for A' and B' into Equation (54), respectively.

The linear infinite cascade of airfoils resulting from the second

transformation is illustrated in the Z-plane of Figure 7. This is the

cascade which was analyzed with the current version of the Douglas Neumann

program to verify the program functions properly. The cascade was analyzed

as a single cascade and was also modeled and analyzed as multiple cascades.

As an example of a multiple cascade model, the numbers above the airfoils

in Figure 7 identify the members of each cascade for a two cascade model.

To obtain a circular cascade for which an exact potential flow

solution is possible, a third transformation is applied to the linear

cascade. Before the third transformation is applied, however, the linear

cascade is modified slightly. For the case illustrated in Figure 7,

where the circular cascade has the radial flow direction inward, the

linear cascade is translated and the signs of the x V coordinates

IZ z
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are changed. These changes, resulting in the cascade illustrated in

the Z'-plane of Figure 7, are necessary to obtain the desired airfoil

orientation and flow direction for the circular cascade in the T-plane.

In Figure 8, the transformations leading to a circular cascade with

the radial flow direction outward are illustrated. Up through the

Z-plane, the transformations are identical to those in Figure 7. In

the Z-plane of Figure 8, however, it is seen that the cascade only

needs to be translated to the +x direction to yield the desired airfoil
z

orientation and flow direction in the T-plane.

The transformation used to go from the V-plane to the T-plane is

the same transformation used in the program, except that for the exact

solutions it is used in complex form. To obtain the new form, Equations

(20) and (21) are first repeated here in terms of the nomenclature of

Figures 7 and 8.

yz = T (56)

xz, = ln rT or rT = e x z  (57)

It is necessary to express the cartesian coordinates of the T-plane

in terms of rT and T .

xT = rT cos aT (58)

6T rT sin 0T (59)

Applying the identities of Equations (56) and (57) to Equations (58) and

(59) yields:
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xT = exz' cos Yz, (60)

YT = ex z ' sin Y z (61)

Expressing x T and yT as a complex number yields the new form of the

transformation.

x + i yT e x Z  (cos Yz' + i sin yz,)T T

e x z e 'YZI = e Z + iYZI

Z'
T= e (62)

This new expression of the transformation in complex form facilitates

the calculation of the complex velocities in the exact solution of the

flow field for the circular cascades.

Starting with coordinates of points on the surface of the cylinder

in the S-plane the preceding transformations define the cascade geometries

for which an exact potential flow solution is obtained. The transformations

also provide the local coordinates of points defining the airfoil shapes,

which are required as input to the Douglas Neumann program. To obtain the

exact flow field solution, however, it is necessary to apply the trans-

formations to the complex potential function which represents the flow

around the cylinder in the S-plane. The complex potential function F(S)

is derived by adding the contribution of each singularity

&i
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F(S) = -E ln(S - A') + iG ln(S - A') - E ln(S - A") - iG ln(S - A")

sink vortex sink vortex

(63)

+ E ln(S - B') - iH ln(S - B') + E ln(S - B") + iH in(S - B")

source vortex source vortex

where E = source and sink strength

G = vortex strength at A' and A"

H = vortex strength at B' and B"

Equation (63) can be written in simplified form as:

F(S) = I in (S - A') + K in (S - A") + K2 in (S - B') + K2 In (S - B") (64)

where K1 -E + iG

K1  complex conjugate of K

K = E - iH
2

K = complex conjugate of K
2 2

Of greater significance than the complex potential function is its

derivative W(S), which is the complex velocity in the S-plane.

SdF(S) K + K, + 2 + K2  (65)
dS (S -A') (S -A") (S -B') (S -B")

To get the complex velocity in other planes, the chain rule is applied.

For the Z plane, W(Z) is obtained as follows:

W(z) = dF(Z) dF(S) dSQ (

o hdS dQ pZ

or for the T-plane:
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W(T) dF(T) dF(S) dS dQ dZ dZ'
T dT dS dQ dZ dZ' dT (67)

Taking the required derivatives of the equations representing the

various transformations yields:

dS S -d 2

dQ Q -2 r2d
2  (68)

2
IdQ Q Q(A + B) + AB

dZ A - B

dZ
d = a constant which depends on which radial

cascade is desired (70)

-dZ' -Z1
T e (71)

The preceding equations complete all the equations which are required

to calculate the velocity at any point in the various planes. It should

be noticed that to calculate the derivatives in Equations (68), (69) and

(71), the complex coordinates of the point under consideration are required

in the S, Q and Z' planes. Thus, to calculate the velocity at a point in

the T-plane, for example, the corresponding points in the other planes must

first be determined using the transformations of Equations (54), (55) and

(62). After the coordinates of these points are known, the velocity at the

original point in the S-plane is calculated using Equation (65). This

complex velocity is then multiplied by the derivatives calculated from

Equation (68) through (71) yielding the desired velocity at the point

in the T-plane.
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Before concluding this section on calculating an exact potential

flow solution for an analytically derived cascade geometry, the constants

K1, KI, K2 and K2 remain to be specified. These constants are chosen so

as to yield the desired inlet or average flow condition and also to satisfy

the Kutta condition. Since K1 and K2 are complex conjugate of K1 and K2,

respectively, it is only necessary to determine K1 and K The desired flow

conditions are known or specified far upstream and far downstream of the

cascade in the Z-plane. Thus, it is desirable to express K1 in terms of

W(Z) as xz approaches plus infinity and K2 in terms of W(Z) as x approaches

negative infinity. The points A and B go to plus infinity and minus

infinity, respectively, during the transformation from the Q-plane to

the Z-plane. Thus, taking the limit of W(Z) as S approaches A' and Q

approaches A yields the limit of W(Z) as x approaches plus infinity.z

From this limit the following equation results:

W(Z) = KI = V - iV , at x = + . (72)
x y z

Similarly, taking the limit of W(Z) as S approaches B' and Q approaches

B yields:

W(Z)=K 2  V - iV , at x = CO - (73)

The velocity components in Equations (72) and (73) can be expressed

in terms of the magnitude of the average cascade velocity U, the cascade

average flow angle a and the upwash and downwash velocity created by the

circulation on the airfoils.

K = U[cos a - i(sin a - Vdn) ]  (74)

i1
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K = U[-cos a + i(sin + V up) (75)

(Vu and Vdn are nondimensionalized by U)

In order for the velocities and coefficients calculated with the exact

solution to match the data from the Douglas Neumann program, K and K2

are nondimensionalized by U yielding:

K = cos a - i(sin a - V dn) (76)

K2 = -cos a + i(sin a + V up) (77)

(Note: The equations for the exact solution in Reference [1] are

nondimensionalized by the magnitude of the inlet velocity V I)

By definition, Vup is equal to V dn. Thus, if a is specified, Vup

and Vdn constitute one unknown which can be solved for by requiring the

trailing edge of the airfoils to be a stagnation point. However, rather

than arbitrarily selecting a, Vup and Vdn were expressed in terms of

the lift coefficient CL which was given the arbitrary value of 1.75

for the current check cases. With CL specified, a must be determined

such that the Kutta condition is satisfied. The expressions for K I and

K 2 in terms of a and CL are:

K = cos a - i(sin a - CL (78)

CL
K2 = - cos a + i(sin a + -- ), (79)

where SP = dimensionless cascade spacing = cascade spacing
chord

Inserting the preceding expressions for K and K 2 along with their complex

conjugates into Equation (65) provides the necessary equation for

determining a. The complex velocity W(S) must be zero at the point on
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the cylinder where it intersects the x axis, since this point becomess

the trailing edge of the airfovils in the Z-plane. Solving for a with

a simple interval halving technique yields a = -0.86154 degrees.

The determination of a completes the explanation of the exact

analytical cascade solution. Important parameters for the cascade in

the Z-plane are summarized below:

SP = 0.79675

CL = 1.75

a = -0.86154 degrees

a, = 28.10800 degrees

a E = -29.43192 degrees

Aa = 57.53992 degrees

The values given above for the angles are also true for the circular

cascades since angles are preserved by conformal transformations.

4.3 Comparisons of the Program Results With Exact Analytical Solutions

The first comparison of the program results with an exact analytical

solution is made for the linear cascade illustrated in the Z-plane of

Figure 7. The pressure distributions on these airfoils obtained from

the cascade program and the exact solution are shown in Figure 9. It is

seen from Figure 9 that the agreement in the data is excellent, as it

should be if the program is functioning properly. Near the center portion

of the airfoil, the differences between the two results are the largest.

For the computer run, the points representing the airfoil were more

closely spaced near the leading and trailing edges of the airfoil in

order to adequately describe the airfoil shape. More points in the

center region of the airfoil should improve the results in this area.

Near the leading and trailing edges where a large number of points were
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Figure 9.A Comparison of the Pressure Distributions obtained From the
Exact Solution and the Computer Program for the Analytically
Derived A\irfoil Shape in a TLinvar Cascade. The Cascade
Geometry is Illustrated in the Z-Plane of Figure 7



-62- 26 June 1981
AMY:cag

used, the steep pressure gradients are very accurately calculated by the

cascade program.

The cascade solution yielding the pressure distribution shown in

Figure 9 was obtained by representing the airfoil with 99 points. As just

stated, more points should yield a more accurate solution, but even with

99 points the results are probably within required engineering accuracy.

Most airfoil shapes employed in engineering practice will not have the

large amount of blade curvature present in the analytical profile. For

this reason, 100 or less points will usually adequately represent any

airfoil of engineering significance. A means of checking if a given

number of points is sufficient to represent an airfoil is to change the

number of points and determine if the solution is significantly altered.

It is recalled that the technique employed in the Douglas Neumann program

will yield results which approach the exact solution as the number of

points approaches infinity.

In order to verify that the program functions properly for each of the

various input options, several cases were run for each cascade with the

different cascade operating parameters given as input. In addition, the

options of running a case as a subcase of the previous case or directing

the program to go directly to the combination equations were checked.

Using the linear cascade as an example, CL was the cascade operating

parameter given as input for the first case. For the second case, a was

the input parameter and the case was run as a subcase of the first case.

For the third and fourth cases, Ac and aI were the input parameters,

respectively, and the program was directed to go directly to the combina-

tion equations. The pressure distributions calculated by the program for

each of the four cases were found to be nearly identical. Comparisons
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of the cascade parameters calculated by the program for the four cases

along with the values obtained from the exact analytical solution are

presented in Table 1.

TABLE 1

A Comparison of Cascade Parameters Obtained

From the Program for the Various Input Parameters

Input Values Obtained From the Cascade Program
Cas InIput

# Pararieter CAL  a A=I-a E a I a E

1 CL -0.7712 57.5388 28.1768 -29.3620

2 a 1.7451 - 57.4040 28.0392 -29.3648

3 Aa 1.7503 -0.7645 - 28.1871 -29.3618

4 a1  1.7475 -0.8165 57.4714 - -29.3634

Values From the 1.75 -0.8615 57.5399 28.1080 -29.4319
Exact Solution

From the fact that the pressure distributions for the four cases were

nearly identical and from the results shown in Table 1, it is apparent

that the various input and running options in the program function properly.

The linear cascade shown in the Z-plane of Figure 7 will also be

used for an example of the verification of the program results for off-body

points. The locations of the off-body points are marked with "x's" in

Figure 7. Table 2 lists the coordinates of the off-body points along

with the velocity components at these points obtained from both the

cascade program and the exact analytical solution. The values shown

in the table verify that the program properly calculates the velocity

components at off-body points.
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TABLE 2

A Comparison of Velocity Components at Off-Body Points

Obtained From the Cascade Program and the Exact Analytical Solution

Off-Body Point Cascade Program Exact Analytical
Coordinates Results Solution

x/c y/c V /U V /U V /U V /U

-0.7424 0.3984 0.9663 0.5518 0.9683 0.5502

-0.7424 0.0 1.0239 0.5195 1.0252 0.5180

-0.7424 -0.3984 0.9663 0.5518 0.9683 0.5502

-0.4924 0.1992 0.9756 0.3831 0.9762 0.3829

-0.4924 0.0 1.1106 0.4345 1.1110 0.4333

-0.4924 -0.1992 1.2289 0.6373 1.2285 0.6344

0.0 0.3011 0.9510 0.0088 0.9526 0.0086

0.0 0.1188 1.0827 -0.0028 1.0830 -0.0031

0.0 -0.0635 1.2305 -0.0133 1.2306 -0.0138

0.5077 0.1992 0.9427 -0.4307 0.9404 -0.4314

0.5077 0.0 1.0824 -0.4592 1.0809 -0.4601

0.5077 -0.1992 1.1879 -0.6175 1.1868 -0.6188

0.7577 0.3984 0.9806 -0.5822 0.9790 -0.5840

0.7577 0.0 1.0190 -0.5445 1.0174 -0.5461

0.7577 -0.3984 0.9806 -0.5822 0.9790 -0.5840

In Figure 10, tie pressure distributions are presented for the

airfoils in the circular cascade with the radial flow inward. This

cascade is illustrated in the T-plane of Figure 7. As seen from Figure 10,

the results from the exact analytical solution and the cascade program are

nearly identical. Again, the differences in the results Fhould be reduced

by increasing the number of points.

It is interesting to compare the shape of the pressure distribution

for the airfoils in the linear cascade with the pressure distribution

for the airfoils in the circular cascade. From Figure 9, it is seen

that the pressure distributLon for the linear cascade has two nearly
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Figure 10. A Comparison of the Pressure Distributions obtained From the
Exact Solution and the Computer Program for the Circular
Cascade Illustrated in the T-Plane of Figure 7
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symmetrical peaks. The pressure distribution shown in Figure 10 for

the circular cascade with the radial flow inward has one large peak

and one small peak. The airfoil geometries in the two cascades are

a little different due to the transformation from the Z-plane to the

T-plane. However, the major effect causing the pressure distributions

to have different shapes is the change in radius for the circular cascade.

The trailing edge of the airfoil in the circular cascade is at a smaller

radius than the leading edge. For this reason, the velocity near the

trailing edge will be greater than the velocity near the leading edge,

resulting in the trailing edge peak to be greater than the peak in the

pressure distribution near the leading edge.

Figure 11 shows the comparison of the pressure distributions for

the last type of cascade, the circular cascade with the radial flow

outward. This cascade is illustrated in the T-plane of Figure 8. In

Figure 8, notice the orientation of the airfoil in the local coordinate

system used for the program input. Since the airfoil is inverted in the

local coordinate system, the airfoil is also shown this way in Figure 11.

In addition, the scale for C is inverted from the previous scales top

match the airfoil. For the circular cascade with the radial flow outward,

it is again seen that the pressure distributions computed with the exact

analytical solution and the rewritten version of the Douglas Neumann

program are nearly identical.

The pressure distribution shown in Figure 11 is similar to the

pressure distribution in Figure 10, in that it has one large peak and

one small peak. However, for the circular cascade with the radial flow

outward, the large peak is near the leading edge, since the leading

edge is at the smaller radius where the velocity is Larger.
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Figure 11. A Compairison of the Pressure Distributions Obtained Prom the
Exact Solution and the Computer Program for the Circular
Cascade Illustrated in the T-Plane of Figure 8
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For both types of circular cascades, the various input options,

program running options, and the off-body point results were all

verified in the same manner as explained for the linear cascade. The

three types of single cascades were then modeled as multiple cascades to

verify the program results for multiple cascade analyses. The pressure

distributions for the different cascades of a multiple cascade model

were found to be nearly identical to each other and to the results

for the single cascade. The flow angles and off-body point results

were also found to be correct for multiple cascade analyses.

4.4 Verification of Results for Multiple Cascades of Lifting and

Nonlifting Bodies

A special case of a multiple cascade analysis results when some

cascades have lifting bodies and others have nonlifting bodies. To

verify that the current version of the Douglas Neumann program could

handle this special case, results from the current version of the program

were compared to results published for the original program in

Reference [1]. The cascades analyzed and the resulting pressure distri-

butions are shown in Figure 12. The first and third cascades consist of

cylinders with no circulation. The second cascade consists of cylinders

which have circulation. In the computer program, the circulation

resulted from specifying the rear stagnation point (trailing edge)

to be at -30 ° on the cylinder. As seen from Figure 12, the pressure

distributions from the two programs are nearly identical, which verifies

the current version of the program can correctly analyze the special

case of multiple cascades with lifting and nonlifting bodies. (Note:

The first and third cascades do have lift forces on them due to induced

effects of the second cascade. However, they do not produce lift on

their own.)
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APPENDIX A

A Users Guide for Running the Program

A.1 Explanation of Program Input

The main body of this report has given the theory behind the program,

has defined the input and output variables, and has discussed how various

types of cascades can be modeled. A basic understanding of the preceding

material should enable the program to be used and the results understood

with little difficulty. This appendix will give detailed instructions

on how to input the required data to the program. In the latter sections

of this appendix, sample input and sample output are presented.

Before describing the program input, attention is called to Figures Al

ad A2 which illustrate the geometric parameters involved in the input.

Figure Al illustrates two linear cascades and Figure A2 illustrates

two circular cascades. Input for one cascade or more than two cascades

follow the same format. With regard to circular cascades, it should be

pointed out that except for two parameters, the input for circular

cascades with the radial flow inward and the input for circular cascades

with the radial flow outward are identical. Of the two parameters which

differ, one tells the program the flow direction and the other specifies

the location of the trailing edge when the radial flow direction is

outward,

For each input card reqiired by the program, the title of the

card will be followed by the variables which appear on the card and their

required format. After the list of variables, a description of each

variable will be given. The following sequence of cards can be repeated

several times in order to run several cases at once. The program will

continue to process runs until a code on the second card tells the
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program to terminate. The various options available for analyzing a

special case of the previous run will be explained as the appropriate

input variables are encountered.

Heading Card: HEDR FORMAT (20A4)

HEDR - A heading which describes the run and is read as alphanumeric

characters. This heading is printed at the top of each page

of output.

Control Card: NB, FLG02, FLG03, FLG04, FLG05, FLG06, FLG07, FLG08,

FLG09, FLGIO, FLGII, FLG12 FORMAT (1215)

NB - number of bodies or cascades

FLG02 - A nonzero integer if the flow is to be determined at points

off of the bodies.

As stated in the main body of this report, a, Ac, al. or CL can be

used in the combination equations for specifying the operating condition

of the cascades. FLG03 through FLG06 specify which input parameter is

used.

FLG03 - A nonzero integer if a is to be used in the combination equations.

FLG04 - A nonzero integer if ac is to be used in the combination equations.

FLG05 - A nonzero integer if a I is to be used in the combination equations.

FLG06 - A nonzero integer if CL is to be used in the combination equations.

CL cannot be used as input for circular cascades.

FLG07 - A nonzero integer if the matrices of influence coefficients (A and

B) and the onset flows are to be printed. The A matrix represents

the velocity components induced normal to the surface and the

B matrix represents the velocity components induced tangent to

the surface. A and B are large matrices and normally are not

printed (FLG07 = 0).
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FLG08 - A nonzero integer if the program is to go directly to the combination

equations using the basic solutions of the previous case. This

option can be used only if the cascade geometry is identical to

the previous case (i.e. only the flow angle or CL is changed).

Off-body point data input is independent of FLG08.

FLG09 - A nonzero integer if the cascades under consideration are circular

cascades.

FLGIO - For circular cascades, FLG1O is a nonzero integer if the radial

flow is outward and FLGIO is zero if the radial flow is inward.

FLGll - A nonzero integer if the first cascade geometry is to be repeated

for a multiple cascade analysis. This option was included as an

aid in inputting data when modeling the cascades requires one

geometry to be repeated with equal spacing between each body

(as with the wicket gates in the example illustrated in Figure 6).

FLG12 - A nonzero integer if the program is to be terminated. The

program will continue to try to process additional runs until

terminated. Thus, terminating the program at the end of a run

requires a heading card, which can be left blank, and a control

card with FLG12 a nonzero integer.

IL
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Cascade Parameter Card: SP, CL, ALPHA, FALPHA, DALPHA, SUBKS FORMAT (5F1O.O, 15)

SP - Cascade Spacing

For linear cascades, SP is the dimensionless cascade spacing nondimen-

sionalized by the chord of one of the cascades. The chord used to

nondimensionalize SP must also be used to nondimensionalize the chords

of all the cascades in order to keep the relative size and spacing

correct. From this point on, the chord of the body used to nondimen-

sionalize SP will be referred to as the reference chord cref.

For circular cascades, SP is the angular spacing in degrees.

Only one of the parameters CL, ALPHA, FALPHA, DALPHA needs to be

specified, depending on which one is to be used in the combination

equations. If not used in the combination equations, any value read is

ignored.

CL - Lift coefficient. CL can only be input for linear cascades.

ALPHA - Average flow angle a.

FALPHA - Inlet flow angle a1 .

DALPHA - Change in flow angle through the cascades, Aa.

SUBKS - A nonzero integer if the unmodified coordinates of all the

bodies of the previous case are to be used for the present

case. The chords, stagger angles, position of the cascades,

etc. may change. For a subcase, the program reads the coordinate

data from files generated in the previous run, but then proceeds

just as if the coordinate data had been read from cards.

If FLG08 is nonzero (i.e. the program is going directly to the combination

equations), the cascade parameter card completes the required input describing

the cascades. The next input will be the off-body point data, if the flow

at off-body points is to be determined for this case.



-77- 26 June 1981
AMY:cag

Similar Cascade Card: NCSG FORMAT (15)

NCSG - The number of cascades with geometry similar to cascade 1,

including cascade 1.

This card is only required if several cascades have the same geometry and

the coordinates of the similar cascades are to be generated internally

subsequent to the input of the coordinates for the first cascade (i.e.

this card is not required unless FLGI1 is nonzero).

Cascade Geometry Card: CHORD, CCANG, XP, YP, RPADDX, ADDY, NP, NLF,

NLE FORMAT (6FlO.O, 315)

CHORD - Dimensionless chord of the body. CHORD should be nondimensionalized

by the chord of one of the cascades c ref . For a single cascade

analysis, CHORD = 1.

CCANG - Stagger angle of the airfoils in the cascade, as illustrated

in Figures Al and A2.

XP, YP - Local coordinates of a point in or on the body which is used to

locate the body in the global coordinate system. The body is

also rotated around the point (XP, YP) to obtain the desired

stagger angle. In addition, the force and moment coefficients

are calculated at this point. XP and YP must be nondimensionalized

by the chord of the body they are for.

RPADDX - For circular cascades, RPADDX is the radius in the global coordinate

system at which the point (XP, YP) is located, as illustrated in

Figure A2.

For linear cascades, RPADDX is the x location in the global coordinate

system at which the point (XP, YP) is located, as illustrated in

Figure Al.

* RPADDX must be nondimensionalized by c
- ref*
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ADDY - For circular cascades, ADDY is the angular location in the global

coordinate system of the point (XP,YP) for one of the bodies in the

cascade. ADDY is illustrated in Figure A2 and must be expressed in

degrees.

For linear cascades, ADDY is the y location in the global coordinate

system of the point (XP,YP) for one of the bodies in the cascade.

ADDY is illustrated in Figure Al and must be nondimensionalized

by cref.

NP - Number of points which will be used to represent the body.

NLF - A nonzero integer if the cascade is nonlifting. If lifting

and nonlifting bodies are both present in a multiple cascade

analysis, the data for the lifting bodies must be read in first.

NLE - For circular cascades with the radial flow outward, NLE is the

number of the point which will be the true trailing edge of the

airfoil. NLE is not required for the other types of cascades,

because the location of the trailing edge is known from the

starting point of the data.

Body Coordinate Cards: X, Y FORMAT (2F10.O)

X, Y - Coordinates of points on the body in the local coordinate system

x'-y' which describe the shape of the body. x and y must be

nondimensionalized by the chord of the body. There are NP

body coordinate cards and the data must start at the points

labeled in Figures Al and A2. For linear cascades and circular

cascades with the radial flow inward, the starting point is the

trailing edge of the airfoil. The first point must be repeated

as the last point.
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Unless the case being run is a subcase or similar cascade geometries are

being generated internally, the cascade geometry card and the body coordinate

cards are repeated for each cascade of a multiple cascade analysis. If the

case being run is a subcase (SUBKS is nonzero), only the cascade geometry

cards are required and the body coordinate data will be read from files.

If similar cascades are being generated internally (FLGII is nonzero),

the cascade geometry card and the body coordinate cards are required for

the first cascade and for each different cascade after the first NCSG

cascades. For the cascades generated internally, the parameters CHORD,

CCANG, XY, YP, RPADDX, NP, NLF and NLE are all set equal to the values

for the first cascade. ADDY is indexed by the value SP/NCSG for each

cascade generated internally.

Off-Body Point Data

Coordinates of off-body points where the flow is to be analyzed

can be read in or generated internally after providing initial information

to the program. The off-body points can be grouped in sets in order to

pro,-ide flexibility in the generation and distribution of the points.

None of the following cards are required if FLG02 is zero.

Number of Sets Card: NSETS FORMAT (15)

NSETS - Number of sets of off-body points to be read in or generated

internally.

Set Initial Data Card: NCR, NPS, XR, YTI, DELYT FORMAT (215, 3FI0.0)

NCR - A nonzero integer if the off-body points of this set are to be

read from cards

- Zero if the off-body points of this set are to be generated Internally.
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NPS - Number of points in the set

If NCR is a nonzero integer, XR, YTl and DELYT do not need to be specified.

XR - For linear cascades, XR is the x coordinate of the off-body points

to be generated in this set.

For circular cascades, XR is the r coordinate of the off-body

points to be generated in this set.

XR must be nondimensionalized by cref.

YTl - For linear cascades, YT1 is the y coordinate of the first point

in the set. YTl must be nondimensionalized by cref.

For circular cascades, YT1 is the e coordinate of the first point

in the set, expressed in degrees.

DELYT - For linear cascades, DELYT is the y increment by which the

remainder of the points in the set will be generated. DELYT

must be nondimensionalized by cref.

For circular cascades, DELYT is the 0 increment by which the

remainder of the points in the set will be generated. DELTY

must be expressed in degrees.

Off-Body Coordinate Cards: XOB, YOB FORMAT (2F10.0)

If the off-body points are to be read in for this set (NCR is nonzero),

NPS off-body point coordinate cards are required.

XOB, YOB - For linear cascades, XOB, YOB are the x, y coordinates of the

off-body points nondimensionalized by cref.

For circular carcades, XOB, YOB are the r, 0 coordinates,

respectively, of the off-body points. XOB must be nondimensionalized

by c and YOB must be expressed in degrees.

. ..f
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The set initial data card and the off-body point coordinate cards when

appropriate are required for each set.

The off-body point data completes the description of the various types

of input for the program. Data for the next case can follow the present

case starting with a new heading card. As previously stated, the program

can be terminated by supplying a blank heading card and making FLG12 a

nonzero integer on the control card.
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APPENDIX A.2

Sample Program Input:

Analytic Cascade Profile C--Multiple Rectangular Cascades

The following sample input data represent the linear cascade and

off-body points shown in the Z-plane of Figure 7. The cascade is modeled

as two cascades to illustrate a multiple cascade analysis. The coordinates

for the second cascade are generated internally (FLGll - nonzero integer

and NCSG = 2), thus, only one set of coordinate data points are given.

Relative to the airfoils, the off-body points are the same as those shown

in Figure 7 and Table 2. However, since the leading edge of the reference

airfoil was positioned at the origin of the global system, the off-body

points reflect this position and are translated from those shown in the

figure and table.

Data are given for four consecutive runs which demonstrate the programs

various input options. The first run has CL as the given cascade operating

parameter. (Note: CL = 2(1.75) = 3.5, since the cascade is modeled as

two similar cascades.) Following the data for the first run, the data for

the second run directs the program to go directly to the combination

equations using Aa as the cascade operating parameter. The third run

is a subcase of the previous run (coordinate data are read from a file)

and al is the given cascade parameter. The final run again directs the

program to go directly to the combination equations, this time with a

as the cascade operating parameter. The data for these four run options

will enable the user to verify that the program is operating properly.

The output for the first run only is given in Section A.3. The output

for the subsequent runs should be similar.
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ANALYTIC CASCADE PROFILE C--MULTIPLE RECTANGULAR CASCADES
2 1 0 0 0 1 0 0 0 0 1 0

1.59350 3.5 0.0 0.0 0.0 0
2

1.0 0.0 0.0 0.0 0.0 0.0 99 0
1.00000 0.0
0.99890 0.00098
0.99602 0.00348
0.99152 0.00719
0.98553 0.01180
0.97817 0.01701
0.96960 0.02255
0.95998 0.02816
0.94953 0.03366
0.93843 0.03890
0.92688 0.04379
0.91502 0.04829
0.90301 0.05237
0.89095 0.05606
0.87892 0.05937
0.86700 0.06232
0.85522 0.06495
0.83222 0.06939
0.81007 0.07290
0.78881 0.07569
0.75852 0.07887
0.71186 0.08230
0.62919 0.08537
0.55523 0.08589
0.48510 0.08489
0.41495 0.08242
0.34107 0.07782
0.29316 0.07333
0.26779 0.07031
0.24130 0.06658
0.21358 0.06194
0.18458 0.05610
0.15440 0.04875
0.12342 0.03957
0.10271 0.03236
0.08238 0.02438
0.06298 0.01593
0.05381 0.01170
0.04509 0.00763
0.03692 0.00383
0.02935 0.00047
0.02246 -0.00228
0.01629 -0.00421
0.01092 -0.00514
0.00639 -0.00486
0.00274 -0.00319
0.0 0.0

-0.00131 0.00471
-0.00259 0.01086
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-0.00223 0.01827
-0.00060 0.02667
0.00237 0.03576
0.00669 0.04520
0.01231 0.05467
0.01906 0.06387
0.02676 0.07260
0.03520 0.08069
0.05342 0.09477
0.07236 0.10607
0.09111 0.11499
0.11791 0.12491
0.14262 0.13189
0.16520 0.13690
0.19863 0.14250
0.25330 0.14832
0.29687 0.15099
0.36487 0.15297
0.41915 0.15334
0.46715 0.15303
0.51338 0.15227
0.56164 0.15097
0.61651 0.14872
0.68571 0.14421
0.73031 0.13980
0.75661 0.13640
0.78649 0.13160
0.79965 0.12910
0.81359 0.12614
0.82839 0.12262
0.84409 0.11838
0.86074 0.11324
0.87833 0.10693
0.89676 0.09917
0.90622 0.09463
0.91578 0.08960
0.92250 0.08576
0.93490 0.07791
0.94425 0.07121
0.95328 0.06396
0.96185 0.05622
0.96978 0.04810
0.97692 0.03978
0.98315 0.03149
0.98838 0.02352
0.99259 0.01618
0.99580 0.00982
0.99807 0.00476
0.99947 0.00135
1.00000 0.0

I

1 15
-0.25000 0.0
-0.25000 -0.39837

....jI I ...i'.. ........... .. .......... .. ..... .. ... ........
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-0.25000 -0.79675
0.0 -0.19919
0.0 -0.39837
0.0 -0.59756
0.49235 -0.09729
0.49235 -0.27957
0.49235 -0.46185
1.0 -0. 19919
1.0 -0.39837
1.0 -0.59756
1.25 0.0
1.25 -0.39837
1.25 -0.79675

ANALYTIC CASCADE PROFILE C--MULTIPLE RECTANGULAR CASCADES
2 1 0 1 0 0 ) 1 0 0 1 0

1.59350 0.0 0.0 0.0 57.53992 0
1
1 15

-0.25000 0.0
-0.25000 -0.39837
-0.25000 -0.79675

0.0 -0.19919
0.0 -0.39837
0.0 -0.59756
0.49235 -0.09729
0.49235 -0.27957
0.49235 -0.46185
1.0 -0.19919
1.0 -0.39837
1.0 -0.59756
1.25 0.0
1.25 -0.39837
1.25 -0.79675

ANALYTIC CASCADE PROFILE C--MULTIPLE RECTANGULAR CASCADES
2 1 0 0 1 0 0 0 0 0 1 0

1.59350 0.0 0.0 28.108 0.0 1
2

1.0 0.0 0.0 0.0 0.0 0.0 99 0
I
1 15

-0.25000 0.0
-0.25000 -0.39837
-0.25000 -0.79675
0.0 -0.19919
0.0 -0.39837
0.0 -0.59756
0.49235 -0.09729
0.49235 -0.27957
0.49235 -0.46185
1.0 -0.19919
1.0 -0.39837
1.0 -0.59756
1.25 0.0
1.25 -0.39837
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1.25 -0.79675
ANALYTIC CASCADE PROFILE C--MULTIPLE RECTANGULAR CASCADES

2 1 1 0 0 0 0 I 0 0 1 0
1.59350 0.0 -0.86154 0.0 0.0 0

1

1 15
-0.25000 0.0
-0.25000 -0.39837
-0.25000 -0.79675
0.0 -0.19919
0.0 -0.39837
0.0 -0.59756
0.49235 -0.09729
0.49235 -0.27957
0.49235 -0.46185
1.0 -0.19919
1.0 -0.39837
1.0 -0.59756
1.25 0.0
1.25 -0.39837
1.25 -0.79675

/*

I
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APPENDIX A.3

Sample Program Output Using Data in Appendix A.2.

Only the Output Which Uses CL in the Combination

Equations is included.

, I.
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APPENDIX B

B.1 Data Storage and Equation Solution Procedures

Appendix B is included in this report because the data storage space

required by the program is one of the primary concerns when adapting the

program to a particular computer system and/or a particular problem. A

discussion of the available methods for solving the system of equations

is included, because the method used depends on the size of the problem

and the amount of core storage available. Although the program is quite

general, the purpose of this appendix is to give the program user an

understanding of the storage requirements and equation solution techniques

so that he can modify the program to meet his needs in the most economical

and time efficient manner. For example, if the user has large problems

but a computer with a small core; the array dimensions will have to be changed

to match the available space and the solution procedure selected which solves

the equations with the terms in the equations read from files or auxiliary

storage. On the other hand, if relatively small problems are run, the

entire matrix representing the system of equations may be stored in the

core and reduced in a conventional manner for the solution.

The major portion of the calculations performed in the program are

done to solve the system of simultaneous equations which yield the source

distributions on the surface of the airfoils. Equation (11) in the main

body of this report represents the system of equations in matrix form.

To aid in the discussion, Equation (11) is rewritten below:
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A A A G -V n
11 12 iN 1 001 1

A A A ay -V n
21 22 2N 2 -V2 2

'N1 AN2  ANN aN -VN "N

or (B.1)

[A] [a] = [0]

where [A] = Influence coefficient matrix

[a] = Source distribution matrix (solution matrix)

[0] = Onset flow matrix

As discussed in the main body of the report, several basic solutions are

required for each problem. Thus, Equation (B.1) must actually be solved

several times. During each step of the solution, the solution matrices

for each basic solution are modified; thus, the several required basic

solutions are essentially obtained simultaneously.

Before discussing the solution techniques, an important difference

should be noted between the A matrix of Equation (B.1) and the matrices of

typical finite element and finite difference methods. The sources applied

to the surface elements of the airfoils in the Douglas Neumann method have

an induced effect on every element. The coefficients in the A matrix in

Equation (B.1) represent this influence; and if there are N elements, there

are N rows in the matrix each with N terms. Typical finite difference and

finite element methods yield matrices with mostly zeros, except near the

diagonal. For the finite difference and finite element methods, only
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the nonzero terms near the diagonal need to be stored and manipulated

for a solution. In comparison, the terms in the A matrix are all nonzero,

and therefore N surface elements result in N2 terms which must be stored

and manipulated for the solution. With N2 terms, it is easy to see that for

a large number of surface elements representing the cascades, storage

problems and long computer solution times may be encountered.

There are currently three methods available to solve the system of

equations in the rewritten version of the Douglas Neumann program. Two

of the methods were in the original Douglas Neumann cascade program and a

third method was developed by ARL which can handle very large problems

and requires less computer time. In the following paragraphs, the three

methods will each be explained and their core storage requirements discussed.

After the three methods are described, an example illustrating the computa-

tion time required by the three methods will be given. The second part

of the appendix then specifically discusses the array dimensions in the

program and how these dimensions and the equation solution procedure can

be changed.

The first method to be discussed for solving the system of

simultaneous equations was in the original Douglas Neumann cascade

program. It is a matrix reduction technique which requires that the

entire A matrix of Equation (B.1) be stored in an array in the computer

core. For each basic solution required, there is an onset flow matrix

[0] which must also be in the core if all the basic solutions are to

be obtained with a single reduction of the A matrix. If there are N

elements and Ns basic solutions needed, the total array area required

by this reduction technique is N2 + N N. With an array area of N2 + N Ns s



-105- 26 June 1981
AMY:cag

required, the reduction technique is usually not practical for problems

with N greater than two hundred. One hundred elements is usually sufficient

to represent one airfoil, thus two cascades can easily be represented by

less than two hundred elements and the equations solved using the matrix

reduction technique.

The idea behind the typical matrix reduction type of simuiLaneous

equation solution is to operate on the coefficient matrix and the matrix

on the right hand side of the equation until the coefficient matrix

consists of ones on the diagonal and zeroes everywhere else. When the

coefficient matrix is reduced to this form, the matrix on the right

hand side of the equation is the solution. Since each row of the two

matrices represents an equation, rows can be multiplied by constants and

added or subtracted from each other just as equations are manipulated.

As the coefficient matrix is reduced, the same operations are performed

on the matrix on the right hand side of the equation. However, the values

in the matrix on the right hand side do not effect the reduction of the

coefficient matrix. For this reason, in the Douglas Neumann program all

of the 0 matrices can be operated on during the reduction of the A matrix,

and all the basic solutions are obtained simultaneously.

In a matrix reduction type of solution procedure, it is known to be

good practice to have one of the larger values of the row on the diagonal.

Since the rows are first divided by the value on the diagonal, a zero cannot

be on the diagonal and small values on the diagonal may result in roundoff

errors. In the Douglas Neumann program, rather than first rearranging the

matrix for a strong diagonal, and equivalent procedure is used where the

largest value of the row is used to divide the other values of row and then

eliminate other terms in the same column. The result is a one in each column

. . . . .. ....k. . .. - - . . .
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with the remaining values zero. However, since the largest values are not

necessarily on the diagonal, the solution when the reduction is completed

is not in the correct order. The second part of the solution technique

thus consists of rearranging the solution matrix so the values are in the

correct order. One improvement the author of this report feels could be

made would be to use a more efficient method of putting the solution in

its proper order.

The second method available for solving the set of simultaneous equations

was also in the original version of the Douglas Neumann cascade program and

is found in one version of Subroutine PART3. A method was required which

could handle larger problems where the A matrix was too large to be stored

in the core of the computer. In the original Douglas Neumann program an

iterative technique was used which only requires one row of the A matrix to be

in the computer core at one time. A row of the A matrix is read from

auxiliary storage and multiplied by the solution matrix [a] as it currently

appears ((aI] is initially zero). If the solution matrix is correct, the

value resulting from the multiplication will equal the corresponding value

in the onset flow matrix. The difference in the two values divided by

A l indicates the amount aI should be changed for the current iteration.

The value of aI is then updated and while a particular row of the A matrix

is in the core the process is repeated for the other basic solutions.

When the calculations are complete for all of the basic solutions, the

next row of the A matrix is read from auxiliary storage and the procedure

is followed until all the rows have been treated. At the end of a complete

iteration the maximum change in any value of a is compared to a convergence

criterion and the iterations continue until the criterion is met. Since

different basic solutions may converge with a different number of iterations,

the iterations only continue for those basic solutions which have not

converged.

Iio , . .. . . . . I I. . .. .1 . .... . . . ...I I . ... . . ... . - ... ' '
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The main disadvantage of the iterative approach is that the A matrix

must be read from auxiliary storage for every iteration. Since reading

files is a much slower process than using values in the computer core,

the computation time for the iterative method can be large.

For the purpose of reducing computation time for large problems, a

third method for solving the set of simultaneous equations was developed

at ARL during the current rewriting of the Douglas Neumann program. The

third method employs a simple matrix reduction technique; but for large

problems where all the equations cannot fit in the core simultaneously,

it combines the use of auxiliary storage and computer core and operates

on only a partial block of the equations in the core at a given time.

The technique is designed to maximize the use of whatever core space

is available and, thus, the dimension of the array used in the reduction

can be made whatever size is best for the computer system.

In the third method, given a work space of a certain size, the sub-

routine first sets aside a portion of the array sufficient to hold one

equation. This space is needed for reading the writing data on the files.

With the remaining space, the subroutine determines how many equations

can fit into the array and reads this number of equations from the file.

The block of equations in the core are then partially reduced, resulting

in ones at the locations representing the diagonal of the complete matrix

and zeros for all the other values in the columns with ones. This

partial reduction of the equations in the core is illustrated schematically

in Figure B.1 where 4 rows of a small 16 x 16 matrix are shown.IOOOXXXXXXXXXXXXI
01 0O0 X XXX XX X XX X X

00 10 XX XX XX XX X X X

O00 1X XX XX XX X X X X

Figure B.1 Illustration of How a Block of Equations Represented by
a Portion of a 16 x 16 Matrix is Partially Reduced in
the Core. The X's Represent Nonzero Numbers.
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With the operations on the equations in the core completed, the

remaining equations or rows of the matrix must also have terms eliminated

by the equations in the core. Therefore, the next procedure is to read

one equations at a time from the file, operate on it with each equation

in the core and write the remaining terms on another file. After all

the equations have been operated on by the equations in the block, the

first step of the reduction is complete. After the first step, the example

16 x 16 A matrix would appear as it is shown schematically in Figure B.2.

As with the other reduction technique, the operations performed on the A

matrix are also performed on the onset flow matrices which will represent

the solutions when the reduction is complete.

10 OOXXXXXXXXXXX X
01 00 X X X X X X X X X X X X Rows of the matrix

0O 1 0 X X X X X X X X X X X X in the core

OOOOXXXXXXXXXXXXI osfhmti

LOOO0 1X XXX XX XX XX X XOOOOXXXXXXXXXXXXI
LRows ofxthexmatrix

0 0 0 0 X X X X X X X X X X X Xintefl
OOOOXXXXXXXXXXXX

OOOOXXXXXXXXXXXX

OOOOXXXXXXXXXXXX

OOOOXXXXXXXXXXXX

OOOOXXXXXXXXXXXX Rowsofthematrix
0Part 0R d 0b 0th XF s Xu X XXXXXXX thefile

0000xXXXxXXXxXXX

Figure B.2 Schematic of a 16 x 16 Matrix After it has been
Partially Reduced by the First Four Rows of the
Matrix.
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After each complete step, the subroutine reads in the next group of

equations (or rows of the matrix) and repeats the reduction process until

all the equations have been in the reduction block in the core and the matrix

is completely reduced. The method of reducing the matrix by operating on

blocks of equations which are in the core of the computer is expected to

result in a substantial savings in computer time over the iterative method,

if the number of times the equations must be read from file is less for

the reduction method. The number of times the equations must be read

from a file is determined by the number of equations which will fit into

the allotted space in the core. To save time, the subroutine taken advantage

of the fact that it need not operate on or store columns of the matrix which

have already been reduced to ones and zeroes. Thus, as the solution proceeds

and the number of terms in the equations is decreasing, a larger number of

equations will fit into the allotted area, decreasing the required number

of steps. Figure B.3 illustrates the second step of the reduction for

the example 16 x 16 matrix and also demonstrates how the number of equations

which will fit into the core increases as the number of terms decreases.

To better realize the significance of increasing the number of

equations in the core as the number of terms decreases, a more realistic

example will be given. Consider the case where there are 200 equations

each with 200 terms and the alloted array space for solving the equation

is 50 x 50 or 2500. Initially 200 spaces are required for reading and

writing data on files, thus only 2300 spaces are available for storing equations

in the core. With 200 terms per equations, 11 equations can be stored in the

core and 11 columns reduced. If the solution technique did not take advantage

of the fact that after each step the number of terms has decreased, it would

require 200 1 11 = 18.2 or 19 steps to reduce the entire matrix. However,

with the number of terms decreased each step, more equations fit into the
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1 000 O0000XXXXXX X

0100 00000 X X X X X X Stored in

0010 00000 X X X X X X X

0000 0 0 000X X X X X X X Segment of the matrix
in the core for the
second step of the

00000 10 X X X X X X X reduction

0000 0000 1XXXXXXX

0000 00000 XXXXXXX"

000 0O0000XXXXXXX

0000 XXXXXXX Stored in

0000 0000 0X X X X X X X a file

000 0O0000XXXXXXX

000 0O0000XXXXXXX
0 0_0 0 0X X X X X X X

columns columns not
not stored
stored after
after 2nd step
ist
step

Figure B.3 Schematic of the Example 16 x 16 Matrix After
the Second Step of the Reduction. The Brackets
Show the Block of the Matrix Which was in the
Core for the Second Step.
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core and only 10 steps are required. Table B.1 depicts the steps required

for this example. Ten steps, meaning ten times the matrix must be read

from files compared to approximately 20 iterations required for the iterative

approach would result in a substantial savings in computer time.

One potential disadvantage of reducing the matrix by blocks of equations

in the core is that the technique does not utilize the concept of first

arranging the matrix for a strong diagonal. In cases run to date, this

has not been found to cause any problems.

Now that the three solution techniques and their core storage require-

ments have been discussed, a comparison of the computation time for each

of the techniques for a sample problem is appropriate. For the analytical

airfoil profile in a linear cascade previously discussed in the section on

check cases, the program was run with the equations solved using each of

the three techniques. The cascade was modeled as two similar cascades to

increase the number of points and to check the multiple cascade solution

procedure. With two cascades each with 99 points describing the airfoils,

there was a total of 196 equations each with 196 terms. Since there were

two cascades with circulation, four basic solutions were required. The

reduction technique with all the equations in the core utilized an array

area 200 x 200. The reduction of the matrix with only a block of equations

in the core was performed using an array area 100 x 100. Constructing a

table similar to Table B.1 would show that the matrix was reduced in

three steps. For the iterative technique, the number of iterations

required by each of the basic solutions is shown in Table B.2 along with the

computation times required by the three techniques. Results for the

iterative technique for two different convergence criteria are shown in

the table.
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TABLE B.1

Steps in Reducing a 200 x 200 Matrix
in a 50 x 50 Array

Equations in
Array Space the Core and Total Number

Terms per Available for Columns of Columns
Step Equaticn Equations Reduced Reducedt
1 200 2300 11 11

2 189 2311 12 23

3 177 2323 13 36

4 164 2336 14 50

5 150 2350 15 65

6 135 2365 17 82

7 118 2382 20 102

8 98 2402 24 126

9 74 2426 32 158

10 42 2458 58 Maximum 200
] 42 Needed

TABLE B.2

A Comparison of the Computation Times Required by the
Three Solution Procedures for a Sample Problem

Reduction Reduction I Iterative Procedure
with by blocks Convergence I Convergence
complete of equa- Criterion = .01 Criterion = .001
matrix in tions in Iterations = 21, Iterations = 26,

the core the core [ 31, 21, 21 41, 27, 26

CPU Time (sec) 232.55 135.44 102.58 123.82

I/O Time (sec) 21.54 31.03 147.51 189.50

Total Time (sec) 254.09 166.47 250.09 313.32
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It is seen from Table B.2 that the procedure which reduces the matrix

by blocks of equations in the core required the least amount of time of

the three techniques. The reduction in blocks procedure required

significantly less CPU time than the procedure with the complete matrix

in the core for two reasons: (1) the. procedure which reduces the matrix

by blocks does not even consider reduced columns where as the other

technique merely skips zero terms when encountered, (2) The procedure which

reduces the complete matrix in the core must reorder the solution when

the reduction is completed. It is also seen from Table B.2 that the

reduction in blocks technique requires considerably less computer time

than the iterative technique because of its savings in I/0 time.

I/0 (i.e. input/output) time reflects the time spent reading disc

files. The iterative technique must read the complete set of equations

from a file for each iteration; and as shown in the table, for a

convergence criteria of .001 the second basic solution required 41

iterations.

To conclude this section of Appendix B, Table B.3 summarizes the

array storage requirements and the major advantages and disadvantages

of the three solution procedures. With a general understanding of the

three procedures and there storage requirements from this section, the

following section explains specifically the array dimensions and how

they and the solution procedure can be changed.
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TABLE B.3

A Comparison of the Three Solution Procedures

Solution Array Storage Major Major
Procedure Spaces Required Advantages Disadvantages

Reduction with the 2 Utilizes strong 1. Limited to small
complete matrix in N diagonal concept problems because of
the core storage requirements

2. Longer computa-
tion time

Reduction by blocks At least 2N, larger 1. Shorter computa- Does not utilize
of equations in the storage areas will tion time strong diagonal
core reduce the compu- 2. Can utilize what- concept

tation time ever storage space
_is available

Iterative Small array Longer computation
Procedure N storage require- time

ments

N = number of equations (and number of terms per equation)
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B.2 Changing Array Dimensions and Solution Procedures

It may sometimes be necessary to change the array dimensions to match

the program to a particular computer system or a particular problem.

Changing solution procedures primarily involves making certain the array

dimensions are consistent with the procedure, thus both changing array

dimensions and solution procedures will be discussed in the context of

explaining the arrays in the program. Several segments of the computer

program are presented in figures to aid in the discussion. All the major

arrays used in the program are in common statements, utilizing the same

storage space for all the subroutines and transferring the needed values

from subroutine to subroutine.

Figure B.4 is a listing of the main program of the rewritten version

of the Douglas Neumann program which reveals all the major arrays used.

The COMMON statements BLK2 and BLK3 contain tne arrays which describe

the geometry of the airfoils in the cascades. The variable arrays in

these statements are defined below:

X, Y - the coordinates input to the program describing the shape

of the airfoils

XMP, YMP - the coordinates of the midpoints of the surface elements

defined by X, Y

Q -complex body coordinates (X + iY)

SINA, COSA - sine and cosine of the angle of the surface elements

Since the arrays in the COMMON statements BLK2 and BLK3 contain

airfoil coordinate data, it is obvious that they must be dimensioned

as large as the number of points used to describe the shape of the airfoils

in the cascades. The current version of the program was intended to

handle up to 10 different cascades each of which can usually be adequately

described with 100 points or less. These numbers (10 x 100) resulted in
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I COMMON/BLKI/HEDR(20)*THETA

-CnMMON/BLK2f Q( 1QOO)*SINA(1000) *COSA( 1000)----
3 COMMON/BLK3/ X(1000).Y(1000),)Q4P(1000).YMP( 1000)

C CO% MON/BLK2/ 0(300)9SINA(300)9COSA(300)

C CO'A'4N/BLK3/ X(300)qY(30,M(0)YP3)_
4 COMMON/BLK4/ NP(10),NLE(lO),SUMDS(10).CHORD(10),XP(10).YP(I0),

*RPADDX( 10) *CCANG( 10) *ADDY( 10) ,NLF( 10)

~.~.OMON RL5/FLGO2,iFLGO3,FFLG04PFLG.05,f7LG06,FLGO79FL-GO8.F-LG099-___
*FLGIO 9FLG1 1 9FLG12

6 COM4MON/9LK6/ NBqNT 9IN1.NSOLvRPI 9R2PI oSr3.CL, ALPHA 9FALPHA #DALPHA
7C'MAO/~LK/XQF3(t530) ,.YO9(!500) ,,NOBP.-

COMNON/BLK8/ SIG( 1000.12)
C cnmMON/BLK8/ SIG(300912)

COM?4N/BLK9/ A (400,00) - ----- - --.--.---.

C ARRAY A IN COMMON BLOCK 9 IS USED BY SEVERAL OIFFERENT

C SUBROUTINES TO STORE TEMPORARY VARIABLES
COMLEXIM.O____

11 INTEGER FLGO2.FLGO3.FLGO4.FLGO5.FLGO6.FLGO7.FLGO8.PFLGO9,
*FLGlOFLGII .FLG12*SUBKS

C PARTI--READS IN DATA, SCALES. ROTATES AND TRANSLATES THE AIRFOILS.

*C IT ALSO TRANSFORMS RADIAL FLOW CASCADES

1'! 10 CALL PARTI-
13 IF(FLGO8.NE.0) GO TO 30

C PART2--SETS UP THE MATRIX WHICH IS SOLVED FOR THE SOURCE
C DISTRI!3UTIONS

14 CALL PART2
15 IF(NT.LE*200) GO TO 20

C DART3--SOLVES THE MATRIX BY REDUCING THE EQUATIONS IN BLOCKS
C IF THE NUMBER OF ELEMENTS IS GREATER THAN 200

16 CALL PART3
17 GO TO 30

C... . . - ... ...

C PART4--SOLVES THE MATRIX BY REDUCTION IF THE NUMBER OF ELEMENTS
C IS LESS THAN OR EQUAL TO 200

18 20 CALL PART4
C
C PAPT5--SOLVES THE COMBINATION EQUATIONS* CALCULATES THE VELCITIES--
C AND PRESSURES AND WRITES THE OUTPUT

.1)l - .30. CALL _PART5 . . -. . . . . . . . . ._ _ ___ _ _

20 GO TO'10
21 END

Figure B.4 A Listing of the Main Program
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the dimension of 100 seen in Figure B.4. Any number of points can be used

to describe the airfoils of cascades, provided the total does not exceed

the dimensions in COMMON statements BLK2 and BLK3. For many problems,

however, a large number of points is not required and the dimensions in

COMMON statements BLK2 and BLK3 can be reduced. Shown as comment statements,

the COMMON statements with the arrays dimensioned 300 are an example of

the dimensions used for several sample runs. This example is carried

throughout the other COMMON statements and subroutines to illustrate the

changes which must be made to keep all the array dimensions consistent.

COMMON statement BLK4 contains various cascade parameters. Since

the program was intended to handle up to 10 cascades, the variables in

COMMON/BLK4/ are all dimensioned 10. These dimensions could be reduced

for problems with fewer than 10 cascades. However, reducing these

dimensions would yield an insignificant savings in storage space and it

is not recommended they be reduced. If it every is desirable to analyze

more than 10 cascades, the dimension of the variables in COMMON/BLK4/ would

have to be increased.

The next major COMMON statement is COMMON/BLK7/, which contains the

coordinates (XOB, YOB) of the off-body calculation points. The off-body

point coordinates are stored in separate arrays from the body points in the

rewritten version of the Douglas Neumann program so that the number of

off-body calculation points can be changed easily without affecting the

number of body points.

The statement COMMON/BLK8/ SIG(1000,12) dimensions the SIC array which

stores the distribution of sources on the surfaces of the airfoils. Each

surface element has a constant value of source strength for each of the

basic solutions required. The first dimension of SIG must therefore be

greater than or equal to the number of surface elements, and the second
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dimension must be greater than or equal to the number of basic solutions. If

there are 10 cascades with circulation to be analyzed, there are 10 + 2 = 1.2

basic solutions required. SIG is therefore dimensioned (1000, 12) in Figure B.4

which is consistent with the previous dimensions in BLK2, BLK3 and BLK4. In the

comment common statement, SIG is dimension (300, 12), to be consistent with

comment COIMON/BLK3/ and COMMON/BLK4/ shown in the figure. The 300 dimension

in BLK3 and the 12 dimension is unchanged since the dimensions in BLK4 are

unchanged. In short, the SIG dimensions can be changed, but they should be

consistent with the dimensions in the other arrays.

The final COMON storage area is COMMON/BLK9/. The A array is

COMMON/BLK9/ is used to solve the set of simultaneous equations. In

SUBROUTINE PART5 the same common space is divided among three arrays

which are used to calculate the velocities on the airfoils and reorder the

data. Since COMMON/BLK9/ is dimensioned several different ways in the

various subroutines, care must be taken to make all changes consistent

throughout the program.

The program normally contains two methods of solving the set of

simultaneous equations and selects one method according to the size of

the problem being run. The equations are either solved by reduction of

the complete matrix in an array in SUBROUTINE PART4 and SUBROUTINE MISI, or

the equations are solved by reduction of blocks of equations or by iterating

in one of the two versions of SUBROUTINE PART3. The program user can inter-

change the two versions of SUBROUTINE PART3 as he chooses. The dimension

of the A array determines the maximum number of equations which can be

solved using the straight matrix reduction. In Figure B.4, the A array

is dimensioned 40000 which corresponds to a square matrix 200 x 200. Thus,

with this dimension, up to 200 equations can be solved by reducing the complete

matrix in an array. The statement IF(NT. LE. 200) go to 20 shown in Figure B.4

directs the program to SUBROUTINE PART4 if the number of elements (equations)

_ ___
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is less than or equal to 200. The number in the IF statement may be

changed to be less than the square root of the A dimension, but it may

not exceed the square root of the A dimension.

Figure B.5 shows the beginning segments of subroutines PART4 and

MISl and reveals the COMMON statements required by these subroutines.

It should be noted that in SUBROUTINE PART4 the A array is two-dimensional

and has equal dimensions since it represents a square matrix. Because

of its form in SUBROUTINE PART4, it is clear that the dimension of the

A array in other subroutines must be such that it can be represented as

a square two-dimensional array. It is also shown in Figure B.5 that in

SUBROUTINE MISl both the A array in COMMON/BLK9/ and the B array in

COMMON/BLK8/ are one-dimensional while in the calling subroutine (SUBROUTINE

PART4) both arrays are two-dimensional. The parameters ND and ND2 in

SUBROUTINE MISI provide MISl with the first dimension of A and B in their

two-dimensional form and enable MISI to recover values from the one-dimensional

arrays which were stored as values in two-dimensional arrays. If the

dimensions of A or B are changed, the parameters ND and ND2 must also

be changed.

COMMON/BLK9/ also appears in the two versions of SUBROUTINE PART3.

In the version which solves the equations by reducing blocks of equations,

the A arrays sLores the equations being reduced. The beginning segment

of this version of SUBROUTINE PART3 is shown in Figure B.6. It is seen

from the figure that the A array is one-dimensional. The parameter

NA shown in Figure B.6 must be given the value of the A array dimension

in order that the subroutine can calculate the number of equations which

will fit into the array. Thus, if the dimension of A is changed, NA

must also be changed. The same COMMON statements are also used by the

version of SUBROUTINE PART3 which iterates for a solution. No parameters
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596 SUBROUTINE PART4

C

___ IF _THENUMBEP OF ELEMENTS IS LESS THAN OR EQUAL TO 200, THIS __

C SUBROUTINE S=ETS UP THE MATRICIES IN ARRAYS WHICH ARE THEN SOLVED

C BY REDUCTION IN SUBROUTINE MISI

-C
597 COMMON/9LK2/ Q(l000)*SINA(I000)*COSA(I000J

C COMMON/9LK2/ Q(300) ,SINA( 300)vCOSA(300)
5991 crP4MON/r3LK6/ NE3,NT, p4,NSOLRPIP2P1,SP.3'CL.ALPHAFALPHADLH

59c) COMfN/qLK8/ SIG(1000912)

C COMMON/BLK8/ SIG(300912)

600 COMMON/BLK9/ A(200.200)

631 COMPLEX P4.0

623 SU8P3UTINE MISI(NONSOL*NERR)

C THIS SUBROUTINE REDUCES THE A MATRIX FOR EACH VECTOR IN B.

-THE FINAL.SOLUT.IONS ARE IN Be _ -.- __-___

624 ~ OMMON/BLKS/ 3(12000)
C "N/K8 8(3600)

C C4ANGE ND2 WHEN CHANGING THE DIMENSION OF B

C N1i2 =(8 DIMENSION)/12

C_ ND =SQRT(A DIMENSION) __ ______

C

626 NEFRIl

627.. ND=200

62q N02=1000

629 M=NSOL

Figure B.5 Parts of Subroutines PART4 and MISi Showing the
Array Dimensions
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456 SUBROUTINE PAIT3

C
. IFTHE NM93ER OF EQUATIONS IS GREATER THAN.2Q0,

C THIS SUBROUTINE SOLVES THE EQUATIONS BY REDUCTION

C HAVING ONLY A PARTIAL BLOCK OF EQUATIONS IN THE CORE

_C . AT ON TIME* THE NUMBER OF EQUATIONS IN THE_ BLOCK INCREASES

C AS THE NU%49EQ OF TERMS IS REDUCED, THUS DECREASING THE

C STEPS REOUIRED.

457 COMMON/BLK2/ Q(1000),SINA(1000)}COSA(1000)

C COMMON/.3LK2/ :3(300)9SINA(300)9COSA(300)

459 .. COMON/LK6/._NBNTIMNSOLRPIR2PIoSPoCLALPHAFALPHADALPHA .

45l COMMON/3!-KR/ SIG(1000*12)

C COMMON/BLK8/ SIG(300,12)
__ _6 _... ... ___________.__. L _ _O .3)

461 COMPLEX IMQ

462 REWIND 3

463 .. REWIND. ... .... .......
464 WRITE(6,601)

465 601 =flRMAT(''lX9'THE EOUATIONS ARE REDUCED IN 3LOCKS 19

. . N. SUOROUT.I N _PA T.. .

466 DO 30 I1=1NT

467 SIG(I,1)=SINA(I)

463 ........... SIG( I,2)=-COSA( I)

469 1=(NSOLLT,3) GO TO 30

470 DO I0 J=3*NSOL
4.71 . . .. .. REA D(3I. ...TL _IJ_ _ .. . . .. ........ . . ... . . . . . .

472 10 CONTINUE
473 DO 20 J=3oNSOL

474 0T....SIG(NI J)=-S I(TJ)

475 20 CONTINUE
475 30 CONTINUE

C NEeD = NUMSER OF EQUATIONS IN THE BLOCK, NEQB CHANGES

C AS THE NUMBER OF TERMS IS REDUCED*.

C -.-.. NTNR. NUMBER -OF. TERMSI N-THE .EQUATIONS WHICH HAVE-N0_T.

C BEEN REDUCED TO 0 OR I

C NTR NUMBER OF TERMS PER EQUATION REDUCED TO 0 OR 1

C .-- _D I. E_N. 'NOF THE A ARRAy.
C

C THE LAST SEGMENT OF THE A ARRAY IS USED FOR TEMPORARY

c STORAGE REQUIRED FOR-PEADING AND WRITING ON FILE..
C IFILE = CODE FOR DETERMINING WHICH FILE IS READ AND WHICH

C IS WRITTEN ON

477 NA=40000

47A IFILE=8

479 . . ..NTR=O ..
480 40 NTNR= NT-NTR

4 1 NEOB=(NA-NTNR)/NTNR

482 IF(NEQB.GT.NT) NEQB=NT

Figure B.6 Beginning at SUBROUTINE PART3 Showing the COMMON Statements
and Important Parameters
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need to be changed in the iterative version when array dimensions are

changed.

When the set of simultaneous equations have been solved for the source distri-

butions on the airfoils, the storage space in COMMON/BLK9/ is free and can be used

for other purposes. This area is therefore used in SUBROUTINE PART5 for calcu-

lating velocities and rearranging the data. The beginning segment of SUBROUTINE

PART5 shown in Figure B.7 reveals that the storage space in COMKON/BLK9/ is divided

among three arrays. The space can be divided in any manner among the array, provided

each array has sufficient space to perform its task. The B array is used to

store the coefficients for the influence of the sources of all the elements

on a particular element. The B matrix is very similar to the A matrix of

Equation B.1 except the velocity component calculated from the B matrix is

tangent to the body surface rather than normal to the surface. Only one

row of the complete B matrix needs to be stored in the B array at one time,

thus its dimension can be as small as the total number of surface elements.

As the velocities at the midpoints of the elements are calculated, the values

are stored in the array V. The velocities are calculated for one cascade

and then the results are printed. Therefore, the V array need only store

the velocities for one cascade at a time and V must be dimensioned at least as

as large as the largest number of elements representing any airfoil in an

analysis. The array TSTOR is used to temporarily store the velocities and

element midpoint coordinates for the cases where the data must be reordered

at the end of the computations. TSTOR must also be dimensioned at least

large as the largest number of elements representing any airfoil. For

example, in a multiple cascade analysis with three cascades represented

by 80, 90, and 100 elements, V and TSTOR must both be dimensioned at least

100. For this example B must be dimensioned at least as large as the total

A.
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* 6E37 SUBROUTINE PART5
* C

__ C THIS_ SU9FOUTINE- SOLVES THE COJMBINATION EQUATIONS AND
C CALCULATES THE VELOCITIES AND PRESSURES.
C

68 _.--- ---- .C-OMMON/BLKl/HEDR(20),THET.A........-. -------.
6ir)COMMiON/BLKP/ Q(1000),SINA(1300)9COSA(1000)

69e) COMMON/BLK3/ )((lO00).Y(l000),KMP(1000),VMPC 1000)

-.. C . CMON/ 9L K2L 1)(3jgQ ),SI.NA ( 3 00 ),CO-SA(:!OJ -

C COMAON/BLK3*/ X(300),Y(300),XNIp(300)9YMP(300)
691 COMMJN/9LK4/ NP(1O).NLE(10),SUMDSC10).CHORD(1O),XP(1O).YP(1O),

*RPADDX(10),CCANG(10),ADDY(10),NLF(I0) . .

692 COMMON/BLK5/ FLG029FLGO3,FLGO49FLGO59FLGO6,FLGO7,FLGO89FLG09*
*FLGIO*FLGII*FLG12

5.93. 4j D~ At=? Cf4.N''K/NT ~NOD!,2ISL&PAA.PADL
694 COMM0K4/6LK7/ XO8(503)9YO8(500)9NJBp
69 5 COMMON/93LKS/ SIG(1000912)

- ~ . ~..COPMON/SLKq./SIG(30.0912) .

696 COMM~ON/9LK9/ 3(16000)tV(12000),TSTOR(12000)
67)7 COMP~L.EX IMjOCSTNH9Z0E3,TFvW

t)91-INTEGFR- F ___LG 3 FL 0 * L 0 P L O6t .G .-- F G0 9 LG -- o. -- - -.
*FLGIOFLG1IIFLG12*SUIKS ---...

699 DIMENSION OVBAS(lO,12,ODV(1ll,1).DVS(Il.I1).GAM(1I)
700 . DIMENSION COMBS(12) - -

Figure B.7 Beginning of SUBROUTINE PART5 Showing the
Array Dimensions
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number of elements or 80 + 90 + 100 = 270. Under usual circumstances

CONMON/BLK9/ will contain much more space than actually required by

B, V and TSTOR.

The major arrays in the program have now been discussed and, if it is

necessary, the program user should be able to change the dimensions of

the arrays. The user can also change the criterion which directs the

program to one of the two internal solution procedures or interchange

the two versions of SUBROUTINE PART3, since the primary concern when

making such changes is providing adequate and consistent array storage.

When changing the dimensions of arrays which are used for solving the

set of simultaneous equations, the user must remember to change the

appropriate parameters in the subroutines as discussed in this appendix.

I
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APPENDIX C

Coordinate Data Input Order and Reordering

The coordinate data describing the shape of the bodies in a cascade

are obviously important input to the Douglas Neumann program. Of great

importance, although for reasons not as obvious, are the starting point

and order of the data. The order of the data is important because the

sine and cosine of the angle of the surface elements are calculated from

the coordinate data. If the coordinate data are not in the correct order,

the sign of the angle according to the chosen convention will be incorrect,

and the boundary condition will not be properly satisfied on the body

surface. For linear cascades and circular cascades with the flow radially

inward, the starting point is also important because it tells the location

of the trailing edge. The location of the trailing edge must be known for the

program to satisfy the Kutta condition.

Concerning the starting point and order of the body coordinate data,

there are three types of cascades which must be given separate considera-

tion. The three types are the linear cascade, the circular cascade with

the radial flow inward, and the circular cascade with the radial flow

outward. To avoid confusion, it is desirably to keep the starting point

and order of the data consistent for all three types of cascades. The

order of the data was chosen to match the original Douglas Neumann program

for a linear cascade. For the circular cascades, the program must reorder

the data so that after the transformation, the starting point and order

correspond to the convention for the linear cascade. In this Appendix,

the coordinate data input for each type of cascade will be described and

the reordering of the data performed by the program will be discussed.
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For all three types of cascades, the coordinate data describing the

shape of a body must be input to the program in terms of a local coordinate

system x'-y'. An example of an airfoil in its local x'-y' coordinate

system is shown in Figure Cl. This airfoil will be used for each type

of cascade to illustrate how the local coordinate system for the airfoil is

related to the cascade coordinate system. As illustrated in Figure Cl,

the coordinate data must start at the trailing edge and progress clockwise

around the airfoil. (Note: For circular cascades, the orientation of

the x'-y' coordinate system with respect to the cascade coordinate system

is the same regardless of whether the flow is radially inward or outward.

Thus, the true leading edge and trailing edge may be reversed from the

orientation shown in Figure Cl. Subsequent figures will clarify this

point.)

Figure C2 shows how the airfoil and its local coordinate system relate

to the cascade coordinate system x-y for the linear type cascade. Although

the local coordinate system of the airfoil can be rotated and translated

within the global system, the cascade must parallel the y axis and the leading

edge of the airfoil must be toward the -x direction. The component of the

flow perpendicular to the cascade is from left to right as shown in Figure

C2. Since the cascade solution technique is the same for all three types

of cascades, the cascade shown in Figure C2 also represents the orientation

of the cascade, the direction of flow, and the order and starting point

of the data for the radial flow cascades after they are transformed.

The orientation of the local coordinate system for an airfoil in a

circular cascade with the radial flow direction inward is shown in Figure C3-a.

Again the airfoils can be rotated and located at any R-O position, but the

origin of the x'-y' system must be facing R = . After the cascade is

transformed to a linear cascade, the orientation of the airfoils, the
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Y I

L. E. T. E . X

DIRECTION FOR COORDINATE INPUT,
STARTING AT THE T.E.

Figure C.1. An Airfoil in its Local Coordinate System x'-y', With
the Order for the Data Input Indicated by the Arrows

Ak
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DIRECTION OF THE
X COMPONENT
OF FLOW

L. E.

Y

DIRECTION FOR COORDINATE
INPUT, STARTING AT THE T.E.

____ x

Figure C.2. A Linear Cascide Showing the Orientation of Airfoil

Coordinate System With Respect to the Cascade Coordinate

System
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RAD IAL FLOW
DIRECTION

DIRECTION FOR
COORD I NATEr
INPUT

INPUT DATA / ' Y1

START

(a)

(C)

DIRECTION OF
COOR D INATE v V xDIRECTION OF

INPU COORD INATE
INPUTINPUT

STARTING STARTING
POINT POINT

Y Y DIRECTION
OF DATA AFTER

COMPUTER
(b) REVERSES

x x ORDER

Figure C.3. a. Schematic of a Circular Cascade Showing The Orientation of
the Airfoil Coordinate System in the Global System. b. A Schematic
Showing the Cascade Orientation and Coordinate Input Direction
After the Transformation. c. Final Cascade Configuration and

Order of Coordinate Data
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order of the coordinate data and the V flow direction are shown schematicallyx

in Figure C3-b. Figure C3-b reveals that the V direction does notx

correspond to the -x to +x direction required by the cascade solution

procedure. For this reason, an additional transformation step is performed

to change the sign of the x coordinates of the transformed cascade,

resulting in the cascade shown in Figure C3-c. After this step, Figure

C3-c shows that the cascade orientation and V flow direction are correct,x

but it is seen that the coordinate data as read in do not correspond

to the order choosen for the cascade solution procedure. Rather than

having different input orders for different types of cascades, the

computer program reverses the order of the coordinate data and the

cascade solution proceeds. Following the flow field solution, the order

of the data is again reversed so the output order matches the original

input.

Figure C4-a shows the orientation of the x'-y' system for an airfoil

in the third type of cascade, a circular cascade with the radial flow

outward. The x'-y' orientation, order of the coordinate data, and the

starting point are the same as for a circular cascade with the radial

flow inward. Identical coordinate input for the two types of circular

cascades was choosen for the computer program so that wicket gates and

stay vanes of hydraulic pump-turbines could be analyzed in both modes with

the same coordinate data. A code in the input tells the program the direction

of the flow, and for the circular cascade with the radial flow outward

the location of the trailing edge is specified since in this case the data

do not start there.

When the cascade in Figure C4-a is transformed, the resulting linear

cascade is shown schematically in Figure C4-b. It is seen in this figure

that the orientation of the airfoils and the direction of V are correct
x
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for the cascade analysis. However, the data start at the point which

would be the trailing edge if the flow was radially inward, and the

starting point must be moved to the true trailing edge for the radial

flow outward condition. Again the computer program reorders the data

so that the input can be consistent for each type of cascade. For the

circular cascade with the radial flow outward, the index of the coordinate

pair which give the location of the trailing edge is input to the program,

and this point is made the starting and finishing point. As in the

case when the radial flow is inward, the output is put back into the

original order after the flow field calculations are complete.

I|
I.!
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DIRECTION FOR
COOR D I NATE

r INPUT

~INPUT DATA

RADIAL FLOW HERE
DIRECTION

/ (a)

DIRECTION OF

COORDINATE INPUT

DATA STARTING POINT
IIS MOVED TO TRUE T.E.VX  / BY THE COMPUTER

DIRECTION OF PROGRAM

TRANSFORMED
RAD IAL FLOW

INPUT STARTING
POINT

X (b)

Figure C.4. a. Schematic of a Circular Cascade with the Radial Flow Direction

Outward. The x'-y' Orientation is the Same as in Figure C.3a.

b. Final Configuration of the Cascade After the Transformation
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